IEEE Trans Neural Netw
June 2010
In this letter we present an algorithm based on a time-delay neural network with spatio-temporal receptive fields and adaptable time delays for image sequence analysis. Our main result is that tedious manual adaptation of the temporal size of the receptive fields can be avoided by employing a novel method to adapt the corresponding time delay and related network structure parameters during the training process.
View Article and Find Full Text PDFInt J Neural Syst
October 1999
We present a simulation environment called SPIKELAB which incorporates a simulator that is able to simulate large networks of spiking neurons using a distributed event driven simulation. Contrary to a time driven simulation, which is usually used to simulate spiking neural networks, our simulation needs less computational resources because of the low average activity of typical networks. The paper addresses the speed up using an event driven versus a time driven simulation and how large networks can be simulated by a distribution of the simulation using already available computing resources.
View Article and Find Full Text PDFInt J Neural Syst
December 1993
A general purpose neurocomputer, SYNAPSE-1, which exhibits a multiprocessor and memory architecture is presented. It offers wide flexibility with respect to neural algorithms and a speed-up factor of several orders of magnitude--including learning. The computational power is provided by a 2-dimensional systolic array of neural signal processors.
View Article and Find Full Text PDF