CC and CXC chemokines are distinct chemokine subfamilies. CC chemokines usually do not bind CXC-chemokine receptors and vice versa. CCR5 and CXCR4 receptors are activated by CCL5 and CXCL12 chemokines, respectively, and are also used as HIV-1 coreceptors.
View Article and Find Full Text PDFThe N-terminal segment of CCR5 contains four tyrosine residues, sulphation of two of which is essential for high-affinity binding to gp120. In the present study, the interactions of gp120 with a 27-residue N-terminal CCR5 peptide sulphated at position Y10 and Y14, i.e.
View Article and Find Full Text PDFMany proteins interact with their ligand proteins by recognition of short linear motifs that are often intrinsically disordered. These interactions are usually weak and are characterized by fast exchange. NMR spectroscopy is a powerful tool to study weak interactions.
View Article and Find Full Text PDFThe N-terminal segment of the chemokine receptor Human CC chemokine receptor 5 (CCR5), Nt-CCR5, contains four tyrosine residues, Y3, Y10, Y14, and Y15. Sulfation of at least two of these tyrosine residues was found to be essential for high-affinity binding of CCR5 to its chemokine ligands. Here, we show that among the monosulfated Nt-CCR5(8-20) peptide surrogates (sNt-CCR5) those sulfated at Y15 and Y14 have the highest affinity for the CC chemokine ligand 5 (CCL5) chemokine in comparison with monosulfation at position Y10.
View Article and Find Full Text PDFProtein Pept Lett
February 2019
Background: Tyrosine sulfation is an important post-translational modification of secreted and membrane proteins in multi-cellular organisms. This modification is catalyzed by tyrosylprotein sulfotransferases that often modify tyrosine residues in their target substrates in a heterogeneous manner. Chemokine receptors such as CCR5, which play roles in inflammation, immunity and viral infection, are sulfated on tyrosine residues in their extracellular N-termini.
View Article and Find Full Text PDF