Emerging drug candidates more often fall in the beyond-rule-of-five chemical space. Among them, proteolysis targeting chimeras (PROTACs) have gained great attention in the past decade. Although physicochemical properties of small molecules accomplishing Lipinski's rule-of-five can now be easily predicted through models generated by large data collections, for PROTACs the knowledge is still limited and heterogeneous, hampering their prediction.
View Article and Find Full Text PDFSelective degradation of disease-causing proteins using proteolysis targeting chimeras (PROTACs) has gained great attention, thanks to its several advantages over traditional therapeutic modalities. Despite the advances made so far, the structural chemical complexity of PROTACs poses challenges in their synthetic approaches. PROTACs are typically prepared through a convergent approach, first synthesizing two fragments separately (target protein and E3 ligase ligands) and then coupling them to produce a fully assembled PROTAC.
View Article and Find Full Text PDFTo date, Proteolysis Targeting Chimera (PROTAC) technology has been successfully applied to mediate proteasomal-induced degradation of several pharmaceutical targets mainly related to oncology, immune disorders, and neurodegenerative diseases. On the other hand, its exploitation in the field of antiviral drug discovery is still in its infancy. Recently, we described two indomethacin (INM)-based PROTACs displaying broad-spectrum antiviral activity against coronaviruses.
View Article and Find Full Text PDF