Publications by authors named "J Alt"

ABST RACTCharacterization of air pollution assessment methodologies in rhinologic disease research is lacking. A scoping review was thus conducted to survey exposure methods in studies examining common rhinologic conditions: allergic rhinitis (AR) and chronic rhinosinusitis (CRS). Several medical databases were queried for variables relating to (1) adults with a diagnosis of CRS or AR and (2) air pollution exposure.

View Article and Find Full Text PDF

: Extracellular vesicles (EVs) can carry pathological cargo, contributing to disease progression. The enzyme neutral sphingomyelinase 2 (nSMase2) plays a critical role in EV biogenesis, making it a promising therapeutic target. Our lab previously identified a potent and selective inhibitor of nSMase2, named DPTIP (IC = 30 nM).

View Article and Find Full Text PDF

Itaconate, an endogenous immunomodulator from the tricarboxylic acid (TCA) cycle, shows therapeutic effects in various disease models, but is highly polar with poor cellular permeability. We previously reported a novel, topical itaconate derivative, SCD-153, for the treatment of alopecia areata. Here, we present the discovery of orally available itaconate derivatives for systemic and skin disorders.

View Article and Find Full Text PDF

Introduction: Tumor boards are a cornerstone of modern cancer treatment. Given their advanced capabilities, the role of Large Language Models (LLMs) in generating tumor board decisions for otorhinolaryngology (ORL) head and neck surgery is gaining increasing attention. However, concerns over data protection and the use of confidential patient information in web-based LLMs have restricted their widespread adoption and hindered the exploration of their full potential.

View Article and Find Full Text PDF
Article Synopsis
  • The subseafloor igneous basement contains a vast microbial habitat, but little is known about the life that exists there, especially in older sections over 65 million years old.
  • Recent research tested this by analyzing samples from the Louisville Seamount Chain, finding varied cell biomass indicating the presence of microbial life in rocks older than 65 million years.
  • The dominant bacterial genes found suggest active microbial processes related to nitrogen, sulfur, metal transformations, and hydrocarbon breakdown, highlighting a much broader range of subseafloor life than previously recognized.
View Article and Find Full Text PDF