The molecular mechanisms that regulate Tau phosphorylation are complex and currently incompletely understood. In the present study, pharmacological inhibitors were deployed to investigate potential processes by which the N-methyl-D-aspartate (NMDA) subtype of glutamate receptors modulates Tau phosphorylation in rat hippocampal slices. Our results demonstrated that Tau phosphorylation at Ser199-202 residues was decreased in NMDA-treated hippocampal slices, an effect that was not reproduced at Ser262 and Ser404 epitopes.
View Article and Find Full Text PDFPhospholipases A₂ (PLA₂s) represent one of the largest groups of lipid-modifying enzymes. Over the years, significant advances have been made in understanding their potential physiological and pathological functions. Depending on their calcium requirement for activation, PLA₂s are classified into calcium dependent and independent.
View Article and Find Full Text PDFCan J Neurol Sci
September 2011
Background: We have recruited a group of four living and reviewed the records of six deceased distantly related French-Canadians of Acadian descent affected by a childhood-onset form of recessive limb-girdle muscular dystrophy (LGMD). All cases originate from the small archipelago of the Magdalen Islands (population: 13,000) isolated in the Gulf of St-Lawrence.
Methods: Based on the likely sharing of the same founder mutation we completed a 319K SNPs genome-wide scan to identify the disease locus and then screen candidate genes in this region.
Physiological activation of the N-methyl-D-aspartate (NMDA) subtype of glutamate receptors has been proposed to play a key role in both neuronal cell function and dysfunction. In the present study, we used selective NMDA receptor antagonists to investigate the involvement of NR2A and NR2B subunits in the modulatory effect of basal NMDA receptor activity on the phosphorylation of Tau proteins. We observed, in acute hippocampal slice preparations, that blockade of NR2A-containing NMDA receptors by the NR2A antagonist NVP-AAM077 provoked the hyperphosphorylation of a residue located in the proline-rich domain of Tau (i.
View Article and Find Full Text PDFIncreasing evidence is demonstrating that drugs affecting dopamine levels in the brain induce cytoskeletal modifications. These evolving changes may impact neuronal synaptic plasticity as cytoskeletal constituents are involved in the maintenance of dendritic processes, and any alterations in their stability could influence major cellular compartments of neurons, such as dendrites, spines and synapses. Here, we describe a molecular chain of events that links dopamine D1 receptor activation to hyperphosphorylation of the microtubule-associated protein tau, which is normally involved in microtubules stabilization.
View Article and Find Full Text PDF