In Brief: Recent reports suggest a relationship between ovarian inflammation and functional declines, although it remains unresolved if ovarian inflammation is the cause or consequence of ovarian aging. In this review, we compile the available literature in this area and point to several current knowledge gaps that should be addressed through future studies.
Abstract: Ovarian aging results in reduced fertility, disrupted endocrine signaling, and an increased burden of chronic diseases.
Ovarian aging leads to diminished fertility, dysregulated endocrine signaling and increased chronic disease burden. These effects begin to emerge long before follicular exhaustion. Female humans experience a sharp decline in fertility around 35 years of age, which corresponds to declines in oocyte quality.
View Article and Find Full Text PDFOvarian aging leads to diminished fertility, dysregulated endocrine signaling, and increased chronic disease burden. These effects begin to emerge long before follicular exhaustion. Around 35 years old, women experience a sharp decline in fertility, corresponding to declines in oocyte quality.
View Article and Find Full Text PDFAlthough we mostly think of αβ T cells as components of the adaptive immune system, a number of them differentiate into alternative lineages. These lineages express TCRs with limited diversity, and functionally bridge the gap between innate and adaptive immunity. They tend to be tissue resident, and mount potent cytokine responses very rapidly after activation, and their development and functional maturation are strongly influenced by the microbiome.
View Article and Find Full Text PDFBackground: CD6 is a lymphocyte surface co-receptor physically associated with the T-cell receptor (TCR)/CD3 complex at the center of the immunological synapse. There, CD6 assists in cell-to-cell contact stabilization and modulation of activation/differentiation events through interaction with CD166/ALCAM (activated leukocyte cell adhesion molecule), its main reported ligand. While accumulating evidence is attracting new interest on targeting CD6 for therapeutic purposes in autoimmune disorders, little is known on its potential in cancer.
View Article and Find Full Text PDF