Publications by authors named "J Alan Yeakley"

We report the development and performance of a novel genomics platform, TempO-LINC, for conducting high-throughput transcriptomic analysis on single cells and nuclei. TempO-LINC works by adding cell-identifying molecular barcodes onto highly selective and high-sensitivity gene expression probes within fixed cells, without having to first generate cDNA. Using an instrument-free combinatorial indexing approach, all probes within the same fixed cell receive an identical barcode, enabling the reconstruction of single-cell gene expression profiles across as few as several hundred cells and up to 100,000 + cells per sample.

View Article and Find Full Text PDF

Background: There is no molecular test for Alzheimer's disease (AD) using self-collected samples, nor is there a definitive molecular test for AD. We demonstrate an accurate and potentially definitive TempO-Seq® gene expression test for AD using fingerstick blood spotted and dried on filter paper, a sample that can be collected in any doctor's office or can be self-collected.

Objective: Demonstrate the feasibility of developing an accurate test for the classification of persons with AD from a minimally invasive sample of fingerstick blood spotted on filter paper which can be obtained in any doctor's office or self-collected to address health disparities.

View Article and Find Full Text PDF

We report the development and performance of a novel genomics platform, TempO-LINC, for conducting high-throughput transcriptomic analysis on single cells and nuclei. TempO-LINC works by adding cell-identifying molecular barcodes onto highly selective and high-sensitivity gene expression probes within fixed cells, without having to first generate cDNA. Using an instrument-free combinatorial-indexing approach, all probes within the same fixed cell receive an identical barcode, enabling the reconstruction of single-cell gene expression profiles across as few as several hundred cells and up to 100,000+ cells per run.

View Article and Find Full Text PDF

The Burn Model System (BMS) program of research has been funded since 1993 by the National Institute on Disability, Independent Living, and Rehabilitation Research (NIDILRR). The overarching aim of this program is to improve outcomes and quality of life for people with burns in the areas of health and function, employment, and community living and participation. This review reports on BMS contributions that have affected the lives of individuals with a significant burn injury using case reports to associate BMS contributions with recovery.

View Article and Find Full Text PDF

We describe the use of a ligation-based targeted whole transcriptome expression profiling assay, TempO-Seq, to profile formalin-fixed paraffin-embedded (FFPE) tissue, including H&E stained FFPE tissue, by directly lysing tissue scraped from slides without extracting RNA or converting the RNA to cDNA. The correlation of measured gene expression changes in unfixed and fixed samples using blocks prepared from a pellet of a single cell type was R2 = 0.97, demonstrating that no significant artifacts were introduced by fixation.

View Article and Find Full Text PDF