Publications by authors named "J Aioun"

Atmospheric pollution has major health effects on directly exposed subjects but intergenerational consequences are poorly characterized. We previously reported that diesel engine exhaust (DE) could lead to structural changes in the placenta of in utero exposed rabbits (first generation, F1). The effects of maternal exposure to DE were further studied on second-generation (F2) rabbits.

View Article and Find Full Text PDF

Foals born to primiparous mares are lighter and less mature than those born to multiparous dams. Factors driving this difference are not totally understood. Using 7 multiparous and 6 primiparous standardbred mares, we demonstrated that, in late gestation, primiparous mares were less insulin resistant compared to multiparous mares, and that their foals had reduced plasma amino-acid concentrations at birth compared to foals born to multiparous mares.

View Article and Find Full Text PDF

Background: Airborne pollution, especially from diesel exhaust (DE), is known to have a negative effect on the central nervous system in exposed human populations. However, the consequences of gestational exposure to DE on the fetal brain remain poorly explored, with various effects depending on the conditions of exposure, as well as little information on early developmental stages. We investigated the short-term effects of indirect DE exposure throughout gestation on the developing brain using a rabbit model.

View Article and Find Full Text PDF

Introduction: Feeding pregnant broodmares with cereal concentrates has been shown to increase maternal insulin resistance and affect foal metabolism in the short and long-term. These effects are likely to be mediated by the placenta. Here, we investigated feto-placental biometry and placental structure and function at term in mares fed with or without cereals concentrates.

View Article and Find Full Text PDF

Background: Airborne pollution is a rising concern in urban areas. Epidemiological studies in humans and animal experiments using rodent models indicate that gestational exposure to airborne pollution, in particular diesel engine exhaust (DE), reduces birth weight, but effects depend on exposure duration, gestational window and nanoparticle (NP) concentration. Our aim was to evaluate the effects of gestational exposure to diluted DE on feto-placental development in a rabbit model.

View Article and Find Full Text PDF