Publications by authors named "J Ahveninen"

Working memory (WM) reflects the transient maintenance of information in the absence of external input, which can be attained via multiple senses separately or simultaneously. Pertaining to WM, the prevailing literature suggests the dominance of vision over other sensory systems. However, this imbalance may be stemming from challenges in finding comparable stimuli across modalities.

View Article and Find Full Text PDF

Here, we report onset latencies for multisensory processing of letters in the primary auditory and visual sensory cortices. Healthy adults were presented with 300-ms visual and/or auditory letters (uppercase Roman alphabet and the corresponding auditory letter names in English). Magnetoencephalography (MEG) evoked response generators were extracted from the auditory and visual sensory cortices for both within-modality and cross-sensory activations; these locations were mainly consistent with functional magnetic resonance imaging (fMRI) results in the same subjects.

View Article and Find Full Text PDF

Previous studies have demonstrated that auditory cortex activity can be influenced by cross-sensory visual inputs. Intracortical laminar recordings in nonhuman primates have suggested a feedforward (FF) type profile for auditory evoked but feedback (FB) type for visual evoked activity in the auditory cortex. To test whether cross-sensory visual evoked activity in the auditory cortex is associated with FB inputs also in humans, we analyzed magnetoencephalography (MEG) responses from eight human subjects (six females) evoked by simple auditory or visual stimuli.

View Article and Find Full Text PDF

The event-related potential/field component N400(m) has been widely used as a neural index for semantic prediction. It has long been hypothesized that feedback information from inferior frontal areas plays a critical role in generating the N400. However, due to limitations in causal connectivity estimation, direct testing of this hypothesis has remained difficult.

View Article and Find Full Text PDF

In current sensorimotor theories pertaining to speech perception, there is a notable emphasis on the involvement of the articulatory-motor system in the processing of speech sounds. Using ultra-high field diffusion-weighted imaging at 7 Tesla, we visualized the white matter tracts connected to areas activated during a simple speech-sound production task in 18 healthy right-handed adults. Regions of interest for white matter tractography were individually determined through 7T functional MRI (fMRI) analyses, based on activations during silent vocalization tasks.

View Article and Find Full Text PDF