Systemic sclerosis (SSc or scleroderma) is an auto-immune disease characterized by skin fibrosis. While primary cells from patients are considered as a unique resource to better understand human disease biology, the effect of in vitro culture on these cells and their evaluation as a platform to identify disease regulators remain poorly characterized. The goal of our studies was to provide insights into the utility of SSc dermal fibroblast primary cells for therapeutic target discovery.
View Article and Find Full Text PDFSystemic sclerosis is an autoimmune disease characterized by fibrosis of skin and multiple organs of which the pathogenesis is poorly understood. We studied differentially expressed coding and non-coding genes in relation to systemic sclerosis pathogenesis with a specific focus on antisense non-coding RNAs. Skin biopsy-derived RNAs from 14 early systemic sclerosis patients and six healthy individuals were sequenced with ion-torrent and analyzed using DEseq2.
View Article and Find Full Text PDFJ Innate Immun
June 2018
Antimicrobial proteins and peptides (AMPs) are a central component of the antibacterial activity of airway epithelial cells. It has been proposed that a decrease in antibacterial lung defense contributes to an increased susceptibility to microbial infection in smokers and patients with chronic obstructive pulmonary disease (COPD). However, whether reduced AMP expression in the epithelium contributes to this lower defense is largely unknown.
View Article and Find Full Text PDFHuman metapneumovirus (HMPV) encodes a small hydrophobic (SH) protein of unknown function. HMPV from which the SH open reading frame was deleted (HMPVΔSH) was viable and displayed similar replication kinetics, cytopathic effect and plaque size compared with wild type HMPV in several cell-lines. In addition, no differences were observed in infection efficiency or cell-to-cell spreading in human primary bronchial epithelial cells (HPBEC) cultured at an air-liquid interphase.
View Article and Find Full Text PDFBackground: Epithelial sodium channel (ENaC) hyperactivity has been implicated in the pathogenesis of cystic fibrosis (CF) by dysregulation of fluid and electrolytes in the airways. In the present study, we show proof-of-principle for ENaC inhibition by lentiviral-mediated RNA interference.
Methods: Immortalized normal (H441) and CF mutant (CFBE) airway cells, and differentiated human bronchial epithelial cells in air liquid interface culture (HBEC-ALI) were transduced with a vesicular stomatitis virus G glycoprotein pseudotyped lentiviral (LV) vector expressing a short hairpin RNA (shRNA) targeting the α subunit of ENaC (ENaCα), and a marker gene.