Introduction: Data are sparse about the potential health risks of chronic low-dose contamination of humans by uranium (natural or anthropogenic) in drinking water. Previous studies report some molecular imbalances but no clinical signs due to uranium intake.
Objectives: In a proof-of-principle study, we reported that metabolomics is an appropriate method for addressing this chronic low-dose exposure in a rat model (uranium dose: 40 mg L; duration: 9 months, n = 10).
The presence of Cesium (Cs) in the environment after nuclear accidents at Chernobyl and more recently Fukushima Daiichi raises many health issues for the surrounding populations chronically exposed through the food chain. To mimic different exposure situations, we set up a male rat model of exposure by chronic ingestion of a Cs concentration likely to be ingested daily by residents of contaminated areas (6500 Bq.l) and tested contaminations lasting 9 months for adult, neonatal and fetal rats.
View Article and Find Full Text PDFBackground & Aim: Despite extensive study of the contribution of cell death and apoptosis to radiation-induced acute intestinal injury, our knowledge of the signaling mechanisms involved in epithelial barrier dysfunction remains inadequate. Because PrP(c) plays a key role in intestinal homeostasis by renewing epithelia, we sought to study its role in epithelial barrier function after irradiation.
Design: Histology, morphometry and plasma FD-4 levels were used to examine ileal architecture, wound healing, and intestinal leakage in PrP(c)-deficient (KO) and wild-type (WT) mice after total-body irradiation.
In view of the known sensitivity of the developing central nervous system to pollutants, we sought to assess the effects of exposure to uranium (U) - a heavy metal naturally present in the environment - on the behavior of young rats and the impact of oxidative stress on their hippocampus. Pups drank U (in the form of uranyl nitrate) at doses of 10 or 40 mg.L(-1) for 10 weeks from birth.
View Article and Find Full Text PDFUranium level in drinking water is usually in the range of microgram-per-liter, but this value may be as much as 100 to 1000 times higher in some areas, which may raise question about the health consequences for human populations living in these areas. Our purpose was to improve knowledge of chemical effects of uranium following chronic ingestion. Experiments were performed on rats contaminated for 9 months via drinking water containing depleted uranium (0.
View Article and Find Full Text PDF