Publications by authors named "J A Vivian"

Myelin loss induces neural dysfunction and contributes to the pathophysiology of neurodegenerative diseases, injury conditions, and aging. Because remyelination is often incomplete, better understanding endogenous remyelination and developing remyelination therapies that restore neural function are clinical imperatives. Here, we use in vivo two-photon microscopy and electrophysiology to study the dynamics of endogenous and therapeutic-induced cortical remyelination and functional recovery after cuprizone-mediated demyelination in mice.

View Article and Find Full Text PDF
Article Synopsis
  • Genetic variation in immune responses, particularly related to HLA and KIR genes, influences how First Nations peoples are affected by infectious diseases.
  • HLA-A24:02 and the KIR3DL1 receptor have evolved in First Nations populations, showcasing a significant adaptation through natural selection.
  • The KIR3DL1114 allele, unique to Oceania, demonstrates a strong interaction with HLA-A24:02, which enhances immune response, thus highlighting the importance of immunogenetic studies in understanding disease susceptibility.
View Article and Find Full Text PDF

Background: Major histocompatibility complex class-1-related protein (MR1), unlike human leukocyte antigen (HLA) class-1, was until recently considered to be monomorphic. MR1 presents metabolites in the context of host responses to bacterial infection. MR1-restricted TCRs specific to tumor cells have been described, raising interest in their potential therapeutic application for cancer treatment.

View Article and Find Full Text PDF

Myelin loss induces deficits in action potential propagation that result in neural dysfunction and contribute to the pathophysiology of neurodegenerative diseases, injury conditions, and aging. Because remyelination is often incomplete, better understanding endogenous remyelination and developing remyelination therapies that seek to restore neural function are clinical imperatives. Here, we used two-photon microscopy and electrophysiology to study the dynamics of endogenous and therapeutic-induced cortical remyelination and functional recovery after cuprizone-mediated demyelination in mice.

View Article and Find Full Text PDF