Brain responses to food are thought to reflect food's rewarding value and to fluctuate with dietary restraint. We propose that brain responses to food are dynamic and depend on attentional focus. Food pictures (high-caloric/low-caloric, palatable/unpalatable) were presented during fMRI-scanning, while attentional focus (hedonic/health/neutral) was induced in 52 female participants varying in dietary restraint.
View Article and Find Full Text PDFThe pathophysiological mechanisms of overactive bladder syndrome (OAB) remain largely unknown, with major involvement of the central nervous system (CNS). The periaqueductal gray (PAG) is a brainstem area which is indicated to play an essential role in bidirectional communication between the bladder and the CNS. We aimed to assess consistency of PAG functional organization across different bladder sensory states in OAB patients.
View Article and Find Full Text PDFThe periaqueductal gray (PAG) is a brain stem area designated to play an essential role in lower urinary tract (LUT) control. Post-mortem human and animal studies have indicated that the PAG is symmetrically organized in functionally and anatomically distinct columns which are involved in sympathetic or parasympathetic autonomic control of the LUT. The current study aims to find consistency across subjects and identify homologous clusters between subjects.
View Article and Find Full Text PDFObjective: Although increasing evidence suggests a central mechanism of action for sacral neuromodulation, the exact mechanism remains unclear. We set up a scanning paradigm to measure brain activation related to various stages of rectal filling using rectal balloon distention.
Materials And Methods: Six healthy volunteers underwent rectal balloon distention during MRI scanning at a 1.