It has long been known that core body temperature declines with age, with temperatures of 35.5°C or below common in the elderly. However, the effects of temperature reduction on bone cell function and skeletal homeostasis have been little studied.
View Article and Find Full Text PDFPurpose: To compare k-t BLAST (broad-use linear-acquisition speedup technique)/k-t SENSE (sensitivity encoding) with conventional SENSE applied to a simple fMRI paradigm.
Materials And Methods: Blood oxygen level-dependent (BOLD) functional magnetic resonance imaging (fMRI) was performed at 3 T using a displaced ultra-fast low-angle refocused echo (UFLARE) pulse sequence with a visual stimulus in a block paradigm. Conventional SENSE and k-t BLAST/k-t SENSE data were acquired.
Active pathological bone destruction in humans often occurs in locations where oxygen tension (pO(2)) is likely to be low, for example, at the sites of tumours, inflammation, infections and fractures, or the poorly vascularized yellow fatty marrow of the elderly. We examined the effect of pO(2) on formation of osteoclasts, the cells responsible for bone resorption, in 14-day cultures of normal human peripheral blood mononuclear cells (hPBMCs) on ivory discs. Hypoxia (1-2% O(2)) caused threefold increases in the number of osteoclasts formed, compared with 20% O(2).
View Article and Find Full Text PDFObjective: As high-field cardiac MRI (CMR) becomes more widespread the propensity of ECG to interference from electromagnetic fields (EMF) and to magneto-hydrodynamic (MHD) effects increases and with it the motivation for a CMR triggering alternative. This study explores the suitability of acoustic cardiac triggering (ACT) for left ventricular (LV) function assessment in healthy subjects (n = 14).
Methods: Quantitative analysis of 2D CINE steady-state free precession (SSFP) images was conducted to compare ACT's performance with vector ECG (VCG).