Ocean alkalinity enhancement (OAE) is a nature-based technology for CO removal and storage, but little is known about its environmental safety. We tested a CO-equilibrated OAE deployment in a close-to-natural community using in situ mesocosms in the oligotrophic subtropical North Atlantic and assessed metazoan zooplankton to inform about food web stability, structure, and production. In addition, a literature review complemented experimental results by summarizing physiological responses of marine animals to decreasing proton concentrations, or increased pH.
View Article and Find Full Text PDFOcean alkalinity enhancement (OAE) is currently discussed as a potential negative emission technology to sequester atmospheric carbon dioxide in seawater. Yet, its potential risks or cobenefits for marine ecosystems are still mostly unknown, thus hampering its evaluation for large-scale application. Here, we assessed the impacts OAE may have on plankton communities, focusing on phytoplankton and microzooplankton.
View Article and Find Full Text PDFEnhancing ocean productivity by artificial upwelling is evaluated as a nature-based solution for food security and climate change mitigation. Fish production is intended through diatom-based plankton food webs as these are assumed to be short and efficient. However, our findings from mesocosm experiments on artificial upwelling in the oligotrophic ocean disagree with this classical food web model.
View Article and Find Full Text PDFGelatinous zooplankton are increasingly recognized to play a key role in the ocean's biological carbon pump. Appendicularians, a class of pelagic tunicates, are among the most abundant gelatinous plankton in the ocean, but it is an open question how their contribution to carbon export might change in the future. Here, we conducted an experiment with large volume in situ mesocosms (~55-60 m and 21 m depth) to investigate how ocean acidification (OA) extreme events affect food web structure and carbon export in a natural plankton community, particularly focusing on the keystone species Oikopleura dioica, a globally abundant appendicularian.
View Article and Find Full Text PDF