Objectives: Near-infrared spectroscopy (NIRS) is a potentially valuable modality to monitor the adequacy of oxygen delivery to the brain and other tissues in critically ill patients, but little is known about the physiologic determinants of NIRS-derived tissue oxygen saturations. The purpose of this study was to assess the contribution of routinely measured physiologic parameters to tissue oxygen saturation measured by NIRS.
Design: An observational sub-study of patients enrolled in the Role of Active Deresuscitation After Resuscitation-2 (RADAR-2) randomized feasibility trial.
Background: Urinary Chemokine (C-C motif) ligand 14 (CCL14) is a biomarker associated with persistent severe acute kidney injury (AKI). There is limited data to support the implementation of this AKI biomarker to guide therapeutic actions.
Methods: Sixteen AKI experts with clinical CCL14 experience participated in a Delphi-based method to reach consensus on when and how to potentially use CCL14.
Sepsis is a life-threatening condition characterised by endothelial barrier dysfunction and impairment of normal microcirculatory function, resulting in a state of hypoperfusion and tissue oedema. No specific pharmacological therapies are currently used to attenuate microvascular injury. Given the prominent role of endothelial breakdown and microcirculatory dysfunction in sepsis, there is a need for effective strategies to protect the endothelium.
View Article and Find Full Text PDF