Publications by authors named "J A Sarabia-Alonso"

In this Letter, we show 3D steady-state trapping and manipulation of vapor bubbles in liquids employing a low-power continuous-wave laser using the Marangoni effect. Light absorption from photodeposited silver nanoparticles on the distal end of a multi-mode optical fiber is used to produce bubbles of different diameters. The thermal effects produced by either the nanoparticles on the fiber tip or the light bulk absorption modulate the surface tension of the bubble wall and creates both longitudinal and transversal forces just like optical forces, effectively creating a 3D potential well.

View Article and Find Full Text PDF

The most common approach to optically generate and manipulate bubbles in liquids involves temperature gradients induced by CW lasers. In this work, we present a method to accomplish both the generation of microbubbles and their 3D manipulation in ethanol through optothermal forces. These forces are triggered by light absorption from a nanosecond pulsed laser (λ = 532 nm) at silver nanoparticles photodeposited at the distal end of a multimode optical fiber.

View Article and Find Full Text PDF

The inclusion of thermal effects in optical manipulation has been explored in diverse experiments, increasing the possibilities for applications in diverse areas. In this Letter, the results of combined optical and thermal manipulation in the vicinity of a highly absorbent hydrogenated amorphous silicon layer, which induces both the generation of convective currents and thermophoresis, are presented. In combination with the optical forces, thermal forces help reduce the optical power required to trap and manipulate micrometric polystyrene beads.

View Article and Find Full Text PDF

The generation and manipulation of microbubbles by means of temperature gradients induced by low power laser radiation is presented. A laser beam (λ = 1064 nm) is divided into two equal parts and coupled to two multimode optical fibers. The opposite ends of each fiber are aligned and separated a distance D within an ethanol solution.

View Article and Find Full Text PDF