Cellulose acetate (CA) mixed-matrix membranes incorporating polyvinylpyrrolidone (PVP), bentonite (B or Ben), graphene oxide (GO), and titanium dioxide (TiO) were prepared by the phase inversion separation technique for oil/water separation. An investigation was performed where the mixed-matrix membrane was tested for the separation performance of hydrophilic and hydrophobic surface properties. An ultrafiltration experiment at the laboratory scale was used to test dead-end ultrafiltration models developed for the treatment performances of oily wastewater under dynamic full-scale operating conditions.
View Article and Find Full Text PDFWaste combustion in residential small-scale combustion units is not legal in the Czech Republic or other European Union countries. The resulting gaseous and particulate pollutants expose inhabitants to smells and toxic compounds and may damage their property and health. This study is designed to define the emissions of gaseous and particulate pollutants and determine the influence of municipal waste combustion on emission factors.
View Article and Find Full Text PDFThe reinvestigation of tetrazene single crystalline material by means of X-ray methods resulted in a slightly different structure when compared to previously published data. Reaction conditions responsible for different crystalline modification formation were investigated. Newly described C form was found to be the primary reaction product and the combined action of temperature and the presence of water over time is required for the transition to the A form.
View Article and Find Full Text PDFThe aim of this study was to determine the operating parameters of bioethanol burners used in the so-called bioethanol fireplaces, mainly in terms of their actual heat output. The method used to determine the actual heat output was designed considering procedures from the standard EN 16647 fireplaces for liquid fuel. Experiments were carried out on eight different types of burners with two different types of fuels.
View Article and Find Full Text PDFPurpose: The stiffness of a myocardial infarct affects the left ventricular pump function and remodeling. Magnetic resonance elastography (MRE) is a noninvasive imaging technique for measuring soft-tissue stiffness in vivo. The purpose of this study was to investigate the feasibility of assessing in vivo regional myocardial stiffness with high-frequency 3D cardiac MRE in a porcine model of myocardial infarction, and compare the results with ex vivo uniaxial tensile testing.
View Article and Find Full Text PDF