Publications by authors named "J A Ramirez Mayans"

A high-nuclearity {Ni} complex (1) with a unique 'flying saucer' motif has been prepared from the organic chelate, α-methyl-2-pyridine-methanol (mpmH), in conjunction with bridging azido (N ) and peroxido (O ) ligands. Magnetic susceptibility measurements revealed the presence of both ferro- and antiferromagnetic exchange interactions between the metal centres in 1, and the stabilization of spin states with appreciable S values at two different temperature regimes. The end-on bridging azido and alkoxido groups are in all likelihood the ferromagnetic mediators, while the η:η:μ-bridging peroxides most likely promote the antiparallel alignment of the metals' spin vectors, yielding an overall non-zero spin ground state for the centrosymmetric compound 1.

View Article and Find Full Text PDF

Slow relaxation of magnetization has been studied for a family of mononuclear Mn complexes and one ferromagnetic dinuclear system, all of them presenting very weak anisotropy. Complexes with formula [{NiL1Mn(HO)(MeOH)}{NiL1}](ClO) (), [Mn{NiL1}](ClO) (), [Mn{NiL2}](ClO) (RR-L2, RR, SS-L2, SS), [Mn{NiL3}](ClO) (RR-L3, RR, SS-L3, SS) and (μ-N)[NiMn(L1)(N)] () are derived from compartmental Schiff bases, in which the Ni environment is square planar and thus diamagnetic. All of the systems have been structurally and magnetically characterized.

View Article and Find Full Text PDF

Background: Major Depressive Disorder (MDD) and Alcohol Use Disorder (AUD) are two high-prevalent conditions where the Endocannabinoid system (ECS) is believed to play an important role. The ECS regulates how different neurotransmitters interact in both disorders, which is crucial for controlling emotions and responses to stress and reward stimuli. Measuring peripheral endocannabinoids (eCBs) in human serum and plasma can help overcome the limitations of detecting endocannabinoid levels in the brain.

View Article and Find Full Text PDF

The neutral holmium(III) oxalate octadecahydrate {[Ho(ox)(HO)]·12HO} of mixed hexagonal/decagonal (6·10) 3D net topology shows important changes in the magnetocaloric efficiency upon dehydration/rehydration by heating and water vapor exposition to give the holmium(III) oxalate decahydrate {[Ho(ox)(HO)]·4HO} of hexagonal (6) 2D net topology through the intermediacy of the elusive amorphous anhydrous compound {Ho(ox)}.

View Article and Find Full Text PDF