The application of frontal polymerization to additive manufacturing has advantages in energy consumption and speed of printing. Additionally, with frontal polymerization, it is possible to print free-standing structures that require no supports. A resin was developed using a mixture of epoxies and vinyl ether with an iodonium salt and peroxide initiating system that frontally polymerizes through radical-induced cationic frontal polymerization.
View Article and Find Full Text PDFAddition of fillers to formulations can generate composites with improved mechanical properties and lower the overall cost through a reduction of chemicals needed. In this study, fillers were added to resin systems consisting of epoxies and vinyl ethers that frontally polymerized through a radical-induced cationic frontal polymerization (RICFP) mechanism. Different clays, along with inert fumed silica, were added to increase the viscosity and reduce the convection, results of which did not follow many trends present in free-radical frontal polymerization.
View Article and Find Full Text PDFThe synthesis and processing of most thermoplastics and thermoset polymeric materials rely on energy-inefficient and environmentally burdensome manufacturing methods. Frontal polymerization is an attractive, scalable alternative due to its exploitation of polymerization heat that is generally wasted and unutilized. The only external energy needed for frontal polymerization is an initial thermal (or photo) stimulus that locally ignites the reaction.
View Article and Find Full Text PDFCulturing cancer cells in a three-dimensional (3D) environment better recapitulates conditions by mimicking cell-to-cell interactions and mass transfer limitations of metabolites, oxygen, and drugs. Recent drug studies have suggested that a high rate of preclinical and clinical failures results from mass transfer limitations associated with drug entry into solid tumors that 2D model systems cannot predict. Droplet microfluidic devices offer a promising alternative to grow 3D spheroids from a small number of cells to reduce intratumor heterogeneity, which is lacking in other approaches.
View Article and Find Full Text PDFThermal frontal polymerization (FP) is a chemical process during which a cold monomer-initiator mixture is converted into a hot polymer as a polymerization front propagates in the system due to the interplay between heat diffusion and the exothermicity of the reaction. The theoretical description of FP generally focuses on one-dimensional (1D) reaction-diffusion (RD) models where the effect of heat losses is encoded into an effective parameter in the heat equation. We show here the limits of such 1D models to describe FP under nonadiabatic conditions.
View Article and Find Full Text PDF