The fate of exogenously supplied glycine betaine and the dynamics of endogenous osmolytes were investigated throughout the growth cycle of salt-stressed cultures of strains of Sinorhizobium meliloti which differ in their ability to use glycine betaine as a growth substrate, but not as an osmoprotectant. We present (sup13)C nuclear magnetic resonance spectral and radiotracer evidence which demonstrates that glycine betaine is only transiently accumulated as a cytoplasmic osmolyte in young cultures of wild-type strains 102F34 and RCR2011. Specifically, these strains accumulate glycine betaine as a preferred osmolyte which virtually prevents the accumulation of endogenous osmolytes during the lag and early exponential phases of growth.
View Article and Find Full Text PDFAn extract from the marine alga Ulva lactuca was highly osmoprotective in salt-stressed cultures of Sinorhizobium meliloti 102F34. This beneficial activity was due to algal 3-dimethylsulfoniopropionate (DMSP), which was accumulated as a dominant compatible solute and strongly reduced the accumulation of endogenous osmolytes in stressed cells. Synthetic DMSP also acted as a powerful osmoprotectant and was accumulated as a nonmetabolizable cytosolic osmolyte (up to a concentration of 1,400 nmol/mg of protein) throughout the growth cycles of the stressed cultures.
View Article and Find Full Text PDFWe combined the use of low inoculation titers (300 +/- 100 CFU/ml) and enumeration of culturable cells to measure the osmoprotective potentialities of dimethylsulfoniopropionate (DMSP), dimethylsulfonioacetate (DMSA), and glycine betaine (GB) for salt-stressed cultures of Escherichia coli. Dilute bacterial cultures were grown with osmoprotectant concentrations that encompassed the nanomolar levels of GB and DMSP found in nature and the millimolar levels of osmoprotectants used in standard laboratory osmoprotection bioassays. Nanomolar concentrations of DMSA, DMSP, and GB were sufficient to enhance the salinity tolerance of E.
View Article and Find Full Text PDFAs a first step towards the elucidation of the molecular mechanisms responsible for the utilization of choline and glycine betaine (betaine) either as carbon and nitrogen sources or as osmoprotectants in Sinorhizobium meliloti, we selected a Tn5 mutant, LTS23-1020, which failed to grow on choline but grew on betaine. The mutant was deficient in choline dehydrogenase (CDH) activity, failed to oxidize [methyl-14C]choline to [methyl-14C]betaine, and did not use choline, but still used betaine, as an osmoprotectant. The Tn5 mutation in LTS23-1020 was complemented by plasmid pCHO34, isolated from a genomic bank of S.
View Article and Find Full Text PDFThe mechanism of osmoadaptation in a salt-tolerant (1.2 M NaCl) bacterial isolate identified as Pseudomonas mendocina (N. J.
View Article and Find Full Text PDF