CR-39 proton radiography is an experimental charged-particle backlighter platform fielded and used at OMEGA and the NIF to image electric and magnetic fields in a subject plasma. Processing a piece of CR-39 involves etching it in hot NaOH, and the etch time can greatly impact the background-to-signal ratio (BSR) in low-fluence (≲4 × 104 cm-2) regions and detection efficiency in high-fluence regions (≳7 × 105 cm-2). For CR-39 data with high fluence variation, these effects mean that any single etch time will result in ≳15% error in the measured signal in either the high- or low-fluence regions.
View Article and Find Full Text PDFThis paper reports on investigations on the impact of higher neutron fluences on the detection efficiency of protons with CR-39, a charged particle track detector. CR-39 is widely used as a diagnostic for inertial fusion applications and is an integral component of numerous particle diagnostics at the OMEGA laser facility and National Ignition Facility. As experiments continue to produce higher and higher yields, existing diagnostics are impacted by higher particle fluences than they were originally designed for.
View Article and Find Full Text PDFRev Sci Instrum
September 2024
Image plates (IPs) are a quickly recoverable and reusable radiation detector often used to measure proton and x-ray fluence in laser-driven experiments. Recently, IPs have been used in a proton radiography detector stack on the OMEGA laser, a diagnostic historically implemented with CR-39, or radiochromic film. The IPs used in this and other diagnostics detect charged particles, neutrons, and x-rays indiscriminately.
View Article and Find Full Text PDFRev Sci Instrum
September 2024
Image plates (IPs), or phosphor storage screens, are a technology employed frequently in inertial confinement fusion (ICF) and high energy density plasma (HEDP) diagnostics because of their sensitivity to many types of radiation, including, x rays, protons, alphas, beta particles, and neutrons. Prior studies characterizing IPs are predicated on the signal level remaining below the scanner saturation threshold. Since the scanning process removes some signal from the IP via photostimulated luminescence, repeatedly scanning an IP can bring the signal level below the scanner saturation threshold.
View Article and Find Full Text PDF