Studying the properties and phase diagram of iron at high-pressure and high-temperature conditions has relevant implications for Earth's inner structure and dynamics and the temperature of the inner core boundary (ICB) at 330 GPa. Also, a hexagonal-closed packed to body-centered cubic (bcc) phase transition has been predicted by many theoretical works but observed only in a few experiments. The recent coupling of high-power laser with advanced x-ray sources from synchrotrons allows for novel approaches to address these issues.
View Article and Find Full Text PDFShake effects, resulting from sudden core potential changes during photoexcitation, are well-known in X-ray photoelectron spectroscopy (XPS) and often produce satellite peaks due to many-body excitations. It has been thought, however, that they are negligible in core-to-core X-ray emission spectroscopy (CTC-XES), where the difference in core-hole potentials upon radiative decay is rather small. We demonstrate that shake effects are significant in Kα XES from 3d transition metal systems with nominally zero valence electrons.
View Article and Find Full Text PDFBackground: Colorectal cancer is the third most common tumour entity in the world and up to 50% of the patients develop liver metastases (CRLM) within five years. To improve and personalize therapeutic strategies, new diagnostic tools are urgently needed. For instance, biomechanical tumour properties measured by magnetic resonance elastography (MRE) could be implemented as such a diagnostic tool.
View Article and Find Full Text PDFThe extracellular environment plays a crucial role in many physiological and pathological processes involving cell motility, such as metastatic invasion in cancer development, by heavily impacting the migration strategies adopted by the cells. The study of how mechanical constraints affect the dynamics of cell migration may be relevant to gain more insight into such processes, and it may prove to be a powerful tool in the hands of biologists. In this chapter, we describe the methods used to investigate the ability of neoplastic cells to migrate through narrowing, rigid microstructures upon chemoattractant stimulation.
View Article and Find Full Text PDFProstate cancer (PCa) is a significant health problem in the male population of the Western world. Magnetic resonance elastography (MRE), an emerging medical imaging technique sensitive to mechanical properties of biological tissues, detects PCa based on abnormally high stiffness and viscosity values. Yet, the origin of these changes in tissue properties and how they correlate with histopathological markers and tumor aggressiveness are largely unknown, hindering the use of tumor biomechanical properties for establishing a noninvasive PCa staging system.
View Article and Find Full Text PDF