Publications by authors named "J A Javitch"

Most adhesion GPCRs undergo autoproteolytic cleavage during receptor biosynthesis, resulting in non-covalently bound N- and C-terminal fragments (NTF and CTF) that remain associated during receptor trafficking to the plasma membrane. While substantial evidence supports increased G protein signaling when just the CTF is expressed, there is an ongoing debate about whether NTF removal is required to initiate signaling in the context of the wild-type receptor. Here, we use adhesion GPCR latrophilin-3 (ADGRL3) as a model receptor to investigate tethered agonist-mediated activation.

View Article and Find Full Text PDF

Metabotropic glutamate (mGlu) receptor protomers can heterodimerize, leading to different pharmacology compared to their homodimeric counterparts. Here, we use complemented donor-acceptor resonance energy transfer (CODA-RET) technology that distinguishes signaling from defined mGlu heterodimers or homodimers, together with targeted mutagenesis of receptor protomers and computational docking, to elucidate the mechanism of activation and differential pharmacology in mGlu heteromers. We demonstrate that positive allosteric modulators (PAMs) that bind an upper allosteric pocket in the mGlu transmembrane domain are active at both mGlu homomers and mGlu heteromers, while those that bind a lower allosteric pocket within the same domain are efficacious in homomers but not heteromers.

View Article and Find Full Text PDF
Article Synopsis
  • Oxa-iboga compounds are newly developed analogs of ibogaine, designed to retain therapeutic benefits while eliminating cardiac safety risks.
  • These compounds demonstrate effectiveness in reducing opioid intake and withdrawal symptoms in animal models, outperforming traditional treatments.
  • Oxa-noribogaine specifically acts as a kappa opioid receptor agonist, offering a unique approach to treating substance use disorders with potential for long-lasting effects.
View Article and Find Full Text PDF

The human calcium-sensing receptor (CaSR) detects fluctuations in the extracellular Ca concentration and maintains Ca homeostasis. It also mediates diverse cellular processes not associated with Ca balance. The functional pleiotropy of CaSR arises in part from its ability to signal through several G-protein subtypes.

View Article and Find Full Text PDF

The serotonergic transmitter system plays fundamental roles in the nervous system in neurotransmission, synaptic plasticity, pathological processes, and therapeutic effects of antidepressants and psychedelics, as well as in the gastrointestinal and circulatory systems. We introduce a novel small molecule fluorescent agent, termed , that specifically labels serotonergic neuronal cell bodies, dendrites, and axonal projections as a serotonin transporter (SERT) fluorescent substrate. SERTlight was developed by an iterative molecular design process, based on an aminoethyl-quinolone system, to integrate structural elements that impart SERT substrate activity, sufficient fluorescent brightness, and a broad absence of pharmacological activity, including at serotonin (5-hydroxytryptamine, 5HT) receptors, other G protein-coupled receptors (GPCRs), ion channels, and monoamine transporters.

View Article and Find Full Text PDF