Aims: To test the antimicrobial and antibiofilm properties of a nitric oxide (NO)-releasing polymer against wound-relevant bacterial pathogens.
Methods And Results: Using a variety of 96-well plate assay systems that include standard well plates and the minimum biofilm eradication concentration biofilm assay well plate, a NO-releasing polymer based on (poly)acrylonitrile (PAN/NO) was studied for antimicrobial and antibiofilm activity against the common wound pathogens Pseudomonas aeruginosa (PAO1), Staphylococcus aureus (Mu50) and Enterococcus faecalis (V583). The polymer was capable of dispersing single-species biofilms of Ps.
Recent theoretical studies have suggested that the parent diazeniumdiolate ion, H2N-N(O)═NO(-) ("diazeniumdiolated ammonia"), might be stable enough to be isolated and that it could potentially serve as a uniquely advantageous prodrug form of bioactive nitroxyl (HNO). Here, we report on an attempt to isolate its O(2)-benzylated derivative by aminolysis of the C═N bond in PhC(NH2)═N-N(O)═NOBn. The reaction proved remarkably sluggish in comparison to aminolysis of unsubstituted benzamidine, and the desired product could not be isolated, apparently because of base sensitivity of the NH2 group.
View Article and Find Full Text PDFBackground: Neointimal hyperplasia limits the longevity of vascular interventions. Nitric oxide (NO) is well known to inhibit neointimal hyperplasia. However, delivery of NO to the vasculature is challenging.
View Article and Find Full Text PDFIn contrast to amidines bearing ionizable alpha-CH bonds, which react with nitric oxide (NO) to add diazeniumdiolate groups at their alpha-carbons, benzamidine forms an N-bound diazeniumdiolate that can be further derivatized at the other amidine nitrogen and/or the terminal oxygen to form caged NO compounds as potential NO prodrugs.
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
September 2010
Diabetes confers greater restenosis from neointimal hyperplasia following vascular interventions. While localized administration of nitric oxide (NO) is known to inhibit neointimal hyperplasia, the effect of NO in type 1 diabetes is unknown. Thus the aim of this study was to determine the efficacy of NO following arterial injury, with and without exogenous insulin administration.
View Article and Find Full Text PDF