Sodium sulfate decahydrate (NaSO10HO, SSD), a low-cost phase change material (PCM), can store thermal energy. However, phase separation and unstable energy storage capacity (ESC) limit its use. To address these concerns, eight polymer additives-sodium polyacrylate (SPA), carboxymethyl cellulose (CMC), Fumed silica (SiO), potassium polyacrylate (PPA), cellulose nanofiber (CNF), hydroxyethyl cellulose (HEC), dextran sulfate sodium (DSS), and poly(sodium 4-styrenesulfonate) (PSS)-were used to explore several stabilization mechanisms.
View Article and Find Full Text PDFBackground: Atrial fibrillation (AFib) is the most common form of heart arrhythmia and a potent risk factor for stroke. Nonvitamin K antagonist oral anticoagulants (NOACs) are routinely prescribed to manage AFib stroke risk; however, nonadherence to treatment is a concern. Additional tools that support self-care and medication adherence may benefit patients with AFib.
View Article and Find Full Text PDFHeat is fundamental to power generation and many industrial processes, and is most useful at high temperatures because it can be converted more efficiently to other types of energy. However, efficient transportation, storage and conversion of heat at extreme temperatures (more than about 1,300 kelvin) is impractical for many applications. Liquid metals can be very effective media for transferring heat at high temperatures, but liquid-metal pumping has been limited by the corrosion of metal infrastructures.
View Article and Find Full Text PDFA central composite response surface design was used to determine the time to growth of Listeria monocytogenes as a function of four continuous variables: added sodium chloride (0.8 to 3.6%), sodium diacetate (0 to 0.
View Article and Find Full Text PDF