Publications by authors named "J A Copello"

Ca2+ alternans (Ca-Alts) are alternating beat-to-beat changes in the amplitude of Ca2+ transients that frequently occur during tachycardia, ischemia, or hypothermia that can lead to sudden cardiac death. Ca-Alts appear to result from a variation in the amount of Ca2+ released from the sarcoplasmic reticulum (SR) between two consecutive heartbeats. This variable Ca2+ release has been attributed to the alternation of the action potential duration, delay in the recovery from inactivation of RYR Ca2+ release channel (RYR2), or an incomplete Ca2+ refilling of the SR.

View Article and Find Full Text PDF

K201 (JTV-519) may prevent abnormal Ca(2+) leak from the sarcoplasmic reticulum (SR) in the ischemic heart and skeletal muscle (SkM) by stabilizing the ryanodine receptors (RyRs; RyR1 and RyR2, respectively). We tested direct modulation of the SR Ca(2+)-stimulated ATPase (SERCA) and RyRs by K201. In isolated cardiac and SkM SR microsomes, K201 slowed the rate of SR Ca(2+) loading, suggesting potential SERCA block and/or RyR agonism.

View Article and Find Full Text PDF

Eudistomin D (EuD) and penaresin (Pen) derivatives are bioactive alkaloids from marine sponges found to induce Ca(2+) release from striated muscle sarcoplasmic reticulum (SR). Although these alkaloids are believed to affect ryanodine receptor (RyR) gating in a "caffeine-like" manner, no single-channel study confirmed this assumption. Here, EuD and MBED (9-methyl-7-bromoeudistomin D) were contrasted against caffeine on their ability to modulate the SR Ca(2+) loading/leak from cardiac and skeletal muscle SR microsomes as well as the function of RyRs in planar bilayers.

View Article and Find Full Text PDF