Publications by authors named "J A Cohlberg"

Mutations in the gene encoding Cu-Zn superoxide dismutase (SOD1) are one of the causes of familial amyotrophic lateral sclerosis (FALS). Fibrillar inclusions containing SOD1 and SOD1 inclusions that bind the amyloid-specific dye thioflavin S have been found in neurons of transgenic mice expressing mutant SOD1. Therefore, the formation of amyloid fibrils from human SOD1 was investigated.

View Article and Find Full Text PDF

Mutations in the gene encoding human copper-zinc superoxide dismutase (SOD1) cause a dominant form of the progressive neurodegenerative disease amyotrophic lateral sclerosis. Transgenic mice expressing the human G85R SOD1 variant develop paralytic symptoms concomitant with the appearance of SOD1-enriched proteinaceous inclusions in their neural tissues. The process(es) through which misfolding or aggregation of G85R SOD1 induces motor neuron toxicity is not understood.

View Article and Find Full Text PDF

Protein aggregates are associated with many diseases and even aggregates of proteins that have no role in disease are inherently toxic to both neuronal and non-neuronal cells. We have developed a model system to explore the mechanism of protein aggregation using a mouse muscle cell line expressing chimeric neurofilament (NF) proteins, a constituent of the protein aggregates in ALS, Lewy body dementia, and Charcot-Marie-Tooth disease. Formation of protein aggregates in these cells leads to reduced cell viability and activated caspases.

View Article and Find Full Text PDF

Regenerating axon tips in transected lamprey spinal cord contain dense accumulations of neurofilaments (NFs), suggesting that NFs may play a role in the mechanism of axonal regeneration. Compared with heteropolymeric assemblies of NF triplet proteins in mammals, NF in lampreys has been thought to contain only a single subunit (NF180). This would imply that NF180 self-assembles, which would be important for manipulating its expression in studies of axonal regeneration.

View Article and Find Full Text PDF

Parkinson's disease is the second most common neurodegenerative disease and results from loss of dopaminergic neurons in the substantia nigra. The aggregation and fibrillation of alpha-synuclein have been implicated as a causative factor in the disease. Glycosaminoglycans (GAGs) are routinely found associated with amyloid deposits in most amyloidosis diseases, and there is evidence to support an active role of GAGs in amyloid fibril formation in some cases.

View Article and Find Full Text PDF