Background And Purpose: Diffusion-weighted imaging (DWI) using single-shot echo planar imaging (DW-EPI) is susceptible to distortions around air-filled cavities and dental fillings, typical for the head and neck area. Non-EPI, Split acquisition of fast spin echo signals for diffusion imaging (DWSPLICE) could reduce these distortions and enhance image quality, thereby potentially improving recurrence assessment in squamous cell carcinoma (SCC) of the head and neck region. This study evaluated whether DW-SPLICE is a viable alternative to DW-EPI through quantitative and qualitative analyses.
View Article and Find Full Text PDFPurpose: To evaluate the potential of synthetic radiomic data generation in addressing data scarcity in radiomics/radiogenomics models.
Methods: This study was conducted on a retrospectively collected cohort of 386 colorectal cancer patients (n = 2570 lesions) for whom matched contrast-enhanced CT images and gene TP53 mutational status were available. The full cohort data was divided into a training cohort (n = 2055 lesions) and an independent and fixed test set (n = 515 lesions).
Magnetic resonance imaging (MRI) is an indispensable, routine technique that provides morphological and functional imaging sequences. MRI can potentially capture tumor biology and allow for longitudinal evaluation of head and neck squamous cell carcinoma (HNSCC). This systematic review and meta-analysis evaluates the ability of MRI to predict tumor biology in primary HNSCC.
View Article and Find Full Text PDFObjectives: To validate associations between MRI features and gene expression profiles in retinoblastoma, thereby evaluating the repeatability of radiogenomics in retinoblastoma.
Methods: In this retrospective multicenter cohort study, retinoblastoma patients with gene expression data and MRI were included. MRI features (scored blinded for clinical data) and matched genome-wide gene expression data were used to perform radiogenomic analysis.
Background -amplified wild-type () retinoblastoma is a rare but clinically important subtype of retinoblastoma due to its aggressive character and relative resistance to typical therapeutic approaches. Because biopsy is not indicated in retinoblastoma, specific MRI features might be valuable to identify children with this genetic subtype. Purpose To define the MRI phenotype of retinoblastoma and evaluate the ability of qualitative MRI features to help identify this specific genetic subtype.
View Article and Find Full Text PDF