Intracranial pressure is routinely monitored in most intensive care units caring for patients with severe neurological insults and, together with continuous arterial blood pressure measurement, allows for monitoring of cerebral perfusion pressure (CPP). CPP is the driving pressure of blood flow to the brain and is used to guide therapy. However, there is considerable inconsistency in the literature regarding how CPP is technically measured and, more specifically, the appropriate placement of the arterial pressure transducer.
View Article and Find Full Text PDFErythropoietin (EPO) has neuroprotective effects in central nervous system injury models. In clinical trials EPO has shown beneficial effects in traumatic brain injury (TBI) as well as in ischemic stroke. We have previously shown that EPO has short-term effects on astrocyte glutamatergic signaling in vitro and that administration of EPO after experimental TBI decreases early cytotoxic brain edema and preserves structural and functional properties of the blood-brain barrier.
View Article and Find Full Text PDFBackground: External ventricular drain (EVD)-related infections (EVDIs) are feared complications that are difficult to rapidly and correctly diagnose, which can lead to unnecessary treatment with broad-spectrum antibiotics. No readily available diagnostic parameters have been identified to reliably predict or identify EVDIs. Moreover, intraventricular hemorrhage is common and affect cerebrospinal fluid (CSF) cellularity.
View Article and Find Full Text PDFBackground: Protective ventilation with lower tidal volumes reduces systemic and organ-specific inflammation. In sepsis-induced encephalopathy or acute brain injury the use of protective ventilation has not been widely investigated (experimentally or clinically). We hypothesized that protective ventilation would attenuate cerebral inflammation in a porcine endotoxemic sepsis model.
View Article and Find Full Text PDFTreating deranged vital signs is a mainstay of critical care throughout the world. In an ICU in a university hospital in Tanzania, the implementation of the Vital Signs Directed Therapy Protocol in 2014 led to an increase in acute treatments for deranged vital signs. The mortality rate for hypotensive patients decreased from 92% to 69%.
View Article and Find Full Text PDF