Publications by authors named "J A Bencomo"

New technologies continue to be developed to improve the practice of radiation therapy. As several of these technologies have been implemented clinically, the Therapy Committee and the Quality Assurance and Outcomes Improvement Subcommittee of the American Association of Physicists in Medicine commissioned Task Group 147 to review the current nonradiographic technologies used for localization and tracking in radiotherapy. The specific charge of this task group was to make recommendations about the use of nonradiographic methods of localization, specifically; radiofrequency, infrared, laser, and video based patient localization and monitoring systems.

View Article and Find Full Text PDF

Intensity-modulated radiation therapy (IMRT) is a complex procedure that involves the delivery of complex intensity patterns from various gantry angles. Due to the complexity of the treatment plans, the standard-of-care is to perform measurement based patient-specific quality assurance (QA). IMRT QA is traditionally done with film for relative dose in a plane and an ion chamber for absolute dose.

View Article and Find Full Text PDF

A comprehensive Code of Ethics for the members of the American Association of Physicists in Medicine (AAPM) is presented as the report of Task Group 109 which consolidates previous AAPM ethics policies into a unified document. The membership of the AAPM is increasingly diverse. Prior existing AAPM ethics polices were applicable specifically to medical physicists, and did not encompass other types of members such as health physicists, regulators, corporate affiliates, physicians, scientists, engineers, those in training, or other health care professionals.

View Article and Find Full Text PDF

Radiographic image guidance has emerged as the new paradigm for patient positioning, target localization, and external beam alignment in radiotherapy. Although widely varied in modality and method, all radiographic guidance techniques have one thing in common--they can give a significant radiation dose to the patient. As with all medical uses of ionizing radiation, the general view is that this exposure should be carefully managed.

View Article and Find Full Text PDF

An evaluation of two anthropomorphic breast phantoms, which have been designed for quality assurance and dose verification of radiotherapy treatment of breast cancer patients, is presented. These phantoms are identical in terms of their dimensions and shape, and composed of several layers of either Plastic Water or tissue-equivalent material. Both water- and tissue-equivalent phantoms include lung- and rib-equivalent components.

View Article and Find Full Text PDF