We investigate a one-dimensional plasmonic crystal using momentum-resolved electron energy-loss spectroscopy (EELS) and cathodoluminescence (CL) techniques, which are complementary in terms of available optical information. The plasmonic crystal sample is fabricated from large aluminum grains through the focused ion beam method. This approach allows curving nanostructures with high crystallinity, providing platforms for detailed analysis of plasmonic nanostructures using both EELS and CL.
View Article and Find Full Text PDFA spherical dielectric particle can sustain the so-called whispering-gallery modes (WGMs), which can be regarded as circulating electromagnetic waves, resulting in the spatial confinement of light inside the particle. Despite the wide adoption of optical WGMs as a major light confinement mechanism in salient practical applications, direct imaging of the mode fields is still lacking and only partially addressed by simple photography and simulation work. The present study comprehensively covers this research gap by demonstrating the nanoscale optical-field visualization of self-interference of light extracted from excited modes through experimentally obtained photon maps that directly portray the field distributions of the excited eigenmodes.
View Article and Find Full Text PDF