Rapid technological advances have significantly improved the capability, versatility, and robustness of mass spectrometers which has led to them playing a central role in the development, characterization, and regulatory filings of biopharmaceuticals. Their application spans the entire continuum of drug development, starting with discovery research through product development, characterization, and marketing authorization and continues well into product life cycle management. The scope of application extends beyond traditional protein characterization and includes elements like clone selection, cell culture physiology and bioprocess optimization, investigation support, and process analytical technology.
View Article and Find Full Text PDFMethods that determine the relative purity of biopharmaceuticals represent the most widely used form of analysis for the pharmaceutical industry. The ability to rapidly assess method capability or the uncertainty of measurements under actual use conditions continues to present significant challenges. We have refined and applied the model of Uncertainty Based on Current Information to predict the precision of the purity measurements and compared the predicted precision to the measured variability for several different types of purity methods.
View Article and Find Full Text PDFA significant challenge of traditional glycan mapping techniques is that they do not provide site-specific glycosylation information. Therefore, for proteins containing multiple glycosylation sites, the individual glycan species present at a particular site cannot be differentiated from those species present at the other glycosylation sites on the molecule. Quantification of glycoform has previously been demonstrated using a multiattribute method (MAM), which can quantify multiple post-translational modifications including deamidation, oxidation, glycosylation variants, and fragmentation ( Rogers, R.
View Article and Find Full Text PDFNuclear magnetic resonance (NMR) is arguably the most direct methodology for characterizing the higher-order structure of proteins in solution. Structural characterization of proteins by NMR typically utilizes heteronuclear experiments. However, for formulated monoclonal antibody (mAb) therapeutics, the use of these approaches is not currently tenable due to the requirements of isotope labeling, the large size of the proteins, and the restraints imposed by various formulations.
View Article and Find Full Text PDFManufacturing-induced disulfide reduction has recently been reported for monoclonal human immunoglobulin gamma (IgG) antibodies, a widely used modality in the biopharmaceutical industry. This effect has been tied to components of the intracellular thioredoxin reduction system that are released upon cell breakage. Here, we describe the effect of process parameters and intrinsic molecule properties on the extent of reduction.
View Article and Find Full Text PDFProtein aggregation was observed in a purification intermediate of a therapeutic Fc-fusion protein stored at -30 °C, even though the protein was stable at 4 and -80 °C. The protein was expressed in Escherichia coli as an inclusion body, refolded, and purified using chromatography columns. To study the nature of this aggregation, a series of experiments were conducted to investigate factors that contributed to the protein instability during freezing.
View Article and Find Full Text PDFStable isotope labeling combined with mass spectrometry has been widely used in a diverse set of applications in the biochemistry and biomedical fields. When stable isotope-labeled proteins are produced via metabolic labeling of cell culture, a comprehensive assessment of the labeling pattern is imperative. In this study, we present a set of mass spectrometry-based bioanalytical tools developed for quantitatively tracing the levels of the stable isotopes incorporated into the recombinant proteins (monoclonal antibodies and Fc fusion proteins expressed in different host systems) that include total mass analysis, peptide mapping analysis, and amino acid analysis.
View Article and Find Full Text PDFPurpose: To predict precision and other performance characteristics of chromatographic purity methods, which represent the most widely used form of analysis in the biopharmaceutical industry.
Methods: We have conducted a comprehensive survey of purity methods, and show that all performance characteristics fall within narrow measurement ranges. This observation was used to develop a model called Uncertainty Based on Current Information (UBCI), which expresses these performance characteristics as a function of the signal and noise levels, hardware specifications, and software settings.
In this report, we examine the performance of a mass spectrometry (MS)-based method for quantification of protein posttranslational modifications (PTMs) using stable isotope labeled internal standards. Uniform labeling of proteins and highly similar behavior of the labeled vs nonlabeled analyte pairs during chromatographic separation and electrospray ionization (ESI) provide the means to directly quantify a wide range of PTMs. In the companion report (Jiang et al.
View Article and Find Full Text PDFWith the increased attention to quality by design (QbD) for biopharmaceutical products, there is a demand for accurate and precise quantification methods to monitor critical quality attributes (CQAs). To address this need we have developed a mass spectrometry (MS) based method to quantify a wide range of posttranslational modifications (PTMs) in recombinant proteins using stable isotope-labeled internal standard (SILIS). The SILIS was produced through metabolic labeling where ¹⁵N was uniformly introduced at every nitrogen atom in the studied proteins.
View Article and Find Full Text PDFOverexpression of recombinant Fc fusion proteins in Escherichia coli frequently results in the production of inclusion bodies that are subsequently used to produce fully functional protein by an in vitro refolding process. During the refolding step, misfolded proteins such as disulfide scrambled forms can be formed, and purification steps are used to remove these product-related impurities to produce highly purified therapeutic proteins. A variety of analytical methods are commonly used to monitor protein variants throughout the purification process.
View Article and Find Full Text PDFMonoclonal antibodies (mAbs) produced from mammalian cell culture may contain significant amounts of dimers and higher order aggregates. Quantitation of soluble aggregates in the cell culture is time-consuming and labor-intensive, usually involving a purification step to remove the impurities that interfere with the subsequent size exclusion chromatography (SEC) analysis. We have developed a novel pH-gradient protein A chromatography for rapid, non-size based separation of the aggregates in mAb cell culture samples.
View Article and Find Full Text PDFSusceptibility of methionine residues to oxidation is a significant issue of protein therapeutics. Methionine oxidation may limit the product's clinical efficacy or stability. We have studied kinetics of methionine oxidation in the Fc portion of the human IgG2 and its impact on the interaction with FcRn and Protein A.
View Article and Find Full Text PDFSeveral different techniques suggested by the International Conference on Harmonization (ICH) Q2R1 guideline were used to assess the signal and concentration at the limit of detection (LOD) and limit of quantitation (LOQ) for a purity method. These approaches were exemplified with a capillary isoelectrofocusing (cIEF) method, which has been developed to quantify the distribution of the charge isoforms of a monoclonal antibody. The charge isoforms are the result of incomplete posttranslational processing of C-terminal lysine residues of the heavy chain by carboxypeptidase.
View Article and Find Full Text PDF