CsPbIBr perovskite solar cells have attracted much attention because of the rapid development in their efficiency and their great potential as a top cell of tandem solar cells. However, the outputs observed so far in most cases are far from that desired for a top cell. Up to now, with various kinds of treatments, the reported champion is only 1.
View Article and Find Full Text PDFA feature of perovskite devices is their suitability in the fabrication of semitransparent solar cells (ST-SCs). Methylammonium lead iodide based perovskite material (MAPbI or PV) is a possible material of choice because of its semitransparent nature in thin film form and after considering a balance among average visible light transmittance (AVT), power conversion efficiency (PCE), and device stability. However, there are issues to be addressed in the design of PV ST-SCs, such as the stability of small grain crystals forming in thin films and reducing the number of layers in the device to increase AVT.
View Article and Find Full Text PDFHole-transporting material (HTM) is an indispensable constituent in organic electronic devices, generally comprising a donor/dopant combination. We report that a disodium salt of substituted benzo[1,2- b:4,5- b']dipyrrole bearing two racemic alkanediylsulfonate anion side chains (BDPSOs) serves as a neutral, nonhygroscopic, dopant-free HTM for lead perovskite (MAPbI) solar cells. These organic/inorganic hybrid molecules are useful for tunable orbital level and controllable solubility.
View Article and Find Full Text PDFA bis(disulfide)-bridged RuMo3S4 double-cubane cluster [{(Cp*Mo)3(mu3-S)4Ru}(mu2-eta2:eta1-S2)]2[PF6]2 (2, Cp* = eta5-C5Me5) is readily available from cluster [(Cp*Mo)3(mu3-S)4RuH2(PPh3)][PF6] (1) and S8. The reactions of cluster 2 with [M(PPh3)4] (M = Pd, Pt) give rise to the formation of a new family of nona- or decanuclear mixed-metal sulfide clusters, [{(Cp*Mo)3(mu3-S)4Ru}2(mu3-S)2{Pd(S)(PPh3)}][PF6]2 (3), [{(Cp*Mo)3(mu3-S)4Ru}2(mu3-S)2{(Pd(PPh3))2(mu2-S)}][PF6]2 (4), and [{(Cp*Mo)3(mu3-S)4Ru}2(mu3-S)2{Pt(PPh3)2}][PF6]2 (5), with two RuMo3S4 cubane units, the structures of which have been determined by X-ray diffraction studies.
View Article and Find Full Text PDFThe reactions of [Cp*MCl2]2(Cp*=eta5-C5Me5, M = Rh, Ir) with thiacalix[4]arene (TC4A(OH)4) and tetramercaptothiacalix[4]arene (TC4A(SH)4) gave the mononuclear complexes [(Cp*M){eta3-TC4A(OH)2(O)2}] and the dinuclear complexes [(Cp*M)2{eta3eta3-TC4A(S)4}] respectively, while the analogous reactions with dimercaptothiacalix[4]arene (TC4A(OH)2(SH)2) produced the tetranuclear complexes [(Cp*M)2(Cp*MCl2)2-{eta3eta3eta1eta1-TC4A(O)2(S)2}].
View Article and Find Full Text PDFThe mixed-metal cubane-type clusters [(Cp*Mo)3(mu3-S)4RuH2(PR3)][PF(6)] [Cp* = eta5-C5Me5; R = Ph (2), Cy (5)] were effective for the N-N bond cleavage of hydrazine and phenylhydrazine via a disproportionation reaction. The ammonia cluster [(C*Mo)3(mu3-S)4Ru(NH3)(PPh3)][PF6] (3) and/or the unprecedented double-cubane-type cluster with bridging nitrogenous ligands [{(Cp*Mo)3(mu3-S)4Ru}2(mu2-NH2)(mu2-NHNH2)][PF6]2 (4) were isolated from the reaction mixtures, and their structures were determined by X-ray diffraction studies.
View Article and Find Full Text PDF