Publications by authors named "Izet Karalic"

Leishmaniasis causes high mortality and morbidity in tropical and subtropical regions of Africa, Asia, the Americas and southern Europe, and is characterized by diverse clinical manifestations. As a neglected tropical disease, limited resources are allocated for antileishmanial drug discovery. The Leishmania parasite is deficient in de novo purine synthesis, and therefore acquires purines from the host and processes these using a purine salvage pathway.

View Article and Find Full Text PDF

Chagas disease and leishmaniasis are two poverty-related neglected tropical diseases that cause high mortality and morbidity. Current treatments suffer from severe limitations and novel, safer and more effective drugs are urgently needed. Both Trypanosoma cruzi and Leishmania are auxotrophic for purines and absolutely depend on uptake and assimilation of host purines.

View Article and Find Full Text PDF

Kinetoplastid parasites are the causative agents of Chagas disease (CD), leishmaniasis and human African trypanosomiasis (HAT). Despite a sustained decrease in the number of HAT cases, more efforts are needed to discover safe and effective therapies against CD and leishmaniasis. Kinetoplastid parasites lack the capability to biosynthesize purines de novo and thus critically depend on uptake and processing of purines from host cells.

View Article and Find Full Text PDF

Chagas disease is a tropical infectious disease resulting in progressive organ-damage and currently lacks efficient treatment and vaccine options. The causative pathogen, Trypanosoma cruzi, requires uptake and processing of preformed purines from the host because it cannot synthesize these de novo, instigating the evaluation of modified purine nucleosides as potential trypanocides. By modifying the pyrimidine part of a previously identified 7-aryl-7-deazapurine nucleoside, we found that substitution of a 6-methyl for a 6-amino group allows retaining T.

View Article and Find Full Text PDF

Chagas disease and visceral leishmaniasis are two neglected tropical diseases responsible for numerous deaths around the world. For both, current treatments are largely inadequate, resulting in a continued need for new drug discovery. As both kinetoplastid parasites are incapable of purine synthesis, they depend on purine salvage pathways that allow them to acquire and process purines from the host to meet their demands.

View Article and Find Full Text PDF

The kinetoplastid parasites Trypanosoma brucei, Trypanosoma cruzi and Leishmania spp. are the causative agents of neglected tropical diseases with a serious burden in several parts of the world. These parasites are incapable of synthesizing purines de novo, and therefore rely on ingenious purine salvage pathways to acquire and process purines from their host.

View Article and Find Full Text PDF

Acid-sensitive paclitaxel (PTX)-polymer conjugates were designed by applying a grafting-from-drug RAFT approach. PTX was linked through either a cyclic or a linear, acid-sensitive acetal moiety. Relative to direct esterification of PTX, which occurred regioselectively at the C' OH-group, direct acetalization was observed at either the C' or the C OH-group of PTX.

View Article and Find Full Text PDF

We report the design and synthesis of a series of non-nucleoside MtbTMPK inhibitors (1-14) based on the gram-positive bacterial TMPK inhibitor hit compound 1. A practical synthesis was developed to access these analogues. Several compounds show promising MtbTMPK inhibitory potency and allow the establishment of a structure-activity relationship, which is helpful for further optimization.

View Article and Find Full Text PDF

We report on the design of a polymeric prodrug of the anticancer agent paclitaxel (PTX) by a grafting-from-drug approach. A chain transfer agent for reversible addition fragmentation chain transfer (RAFT) polymerization was efficiently and regioselectively linked to the C2' position of paclitaxel, which is crucial for its bioactivity. Subsequent RAFT polymerization of a hydrophilic monomer yielded well-defined paclitaxel-polymer conjugates with high drug loading, water solubility, and stability.

View Article and Find Full Text PDF

The lack of selectivity and low solubility of many chemotherapeutics impels the development of different biocompatible nanosized drug carriers. Amphiphilic block copolymers, composed of a hydrophilic and hydrophobic domain, show great potential because of their small size, large solubilizing power and loading capacity. In this paper, we introduce a new class of degradable temperature-responsive block copolymers based on the modification of N-(2-hydroxypropyl)methacrylamide (HPMA) with an ethyl group via a hydrolytically sensitive carbonate ester, polymerized by radical polymerization using a PEG-based macroinitiatior.

View Article and Find Full Text PDF

We report the evaluation of two alternative chemical dimerizer approaches aimed at increasing the sensitivity of MASPIT, a three-hybrid system that enables small-molecule target protein profiling in intact human cells. To circumvent the potential limitations related to the binding of methotrexate (MTX) to endogenous human dihydrofolate reductase (DHFR), we explored trimethoprim (TMP) as an alternative prokaryote-specific DHFR ligand. MASPIT evaluation of TMP fusion compounds with tamoxifen, reversine, and simvastatin as model baits, resulted in dose-response curves shifted towards lower EC50 values than those of their MTX congeners.

View Article and Find Full Text PDF

In this study we report the synthesis of C5/C6-fused uridine phosphonates that are structurally related to earlier reported allosteric P2Y2 receptor ligands. A silyl-Hilbert-Johnson reaction of six quinazoline-2,4-(1H,3H)-dione-like base moieties with a suitable ribofuranosephosphonate afforded the desired analogues after full deprotection. In contrast to the parent 5-(4-fluoropheny)uridine phosphonate, the present extended-base uridine phosphonates essentially failed to modulate the P2Y2 receptor.

View Article and Find Full Text PDF

Two focused libraries based on two types of compounds, that is, thiazolidinediones and dioxazaborocanes were designed. Structural resemblances can be found between thiazolidinediones and well-known furanone type quorum sensing (QS) inhibitors such as N-acylaminofuranones, and/or acyl-homoserine lactone signaling molecules, while dioxazaborocanes structurally resemble previously reported oxazaborolidine derivatives which antagonized autoinducer 2 (AI-2) binding to its receptor. Because of this, we hypothesized that these compounds could affect AI-2 QS in Vibrio harveyi.

View Article and Find Full Text PDF

Chloroform extracts of the underground parts of two Balkan endemic Laserpitium species, Laserpitium zernyi Hayek and Laserpitium ochridanum Micevski, were chemically investigated. Five unknown guaianolides from the class of slovanolides, of which four were additionally 2β-esterified, as well as two lactones, previously identified in other Laserpitium species, were isolated from the L. ochridanum extract.

View Article and Find Full Text PDF

The aqueous methanolic leaf extract of Fargesia robusta var. Pingwu was evaluated in vitro for its antioxidant capacity using the TEAC and ORAC assays. C-Glycosyl flavones, farobin A (1) and farobin B (2), together with three known compounds, tricin-5-O-glucopyranoside (3), 2''-O-α-rhamnosyl-6-C-(6-deoxy-ribo-hexos-3-ulosyl)luteolin (4), and luteolin-6-C-glucopyranoside (homoorientin) (5), were isolated from the hydroalcoholic extract of the leaves of F.

View Article and Find Full Text PDF

An efficient protocol for the construction of C-6-(hetero)aryl-substituted uridine phosphonate analogues utilizing an aerobic, ligand-free Suzuki-Miyaura cross-coupling reaction of a 6-iodo-precursor in aqueous media has been established. The method presents a modular approach toward the target compounds as demonstrated by the synthesis of a small library comprising 14 novel nucleoside phosphonates.

View Article and Find Full Text PDF