For the majority of patients with pancreas cancer, the high metastatic proclivity is life limiting. Some patients, however, present with and succumb to locally destructive disease. A molecular understanding of these distinct disease manifestations can critically inform patient management.
View Article and Find Full Text PDFBackground: Pancreatic ductal adenocarcinoma (PDA) is characterised by a robust desmoplasia, including the notable accumulation of immunosuppressive cells that shield neoplastic cells from immune detection. Immune evasion may be further enhanced if the malignant cells fail to express high levels of antigens that are sufficiently immunogenic to engender an effector T cell response.
Objective: To investigate the predominant subsets of immunosuppressive cancer-conditioned myeloid cells that chronicle and shape the progression of pancreas cancer.
Pancreatic ductal adenocarcinoma (PDA) is among the most lethal human cancers in part because it is insensitive to many chemotherapeutic drugs. Studying a mouse model of PDA that is refractory to the clinically used drug gemcitabine, we found that the tumors in this model were poorly perfused and poorly vascularized, properties that are shared with human PDA. We tested whether the delivery and efficacy of gemcitabine in the mice could be improved by coadministration of IPI-926, a drug that depletes tumor-associated stromal tissue by inhibition of the Hedgehog cellular signaling pathway.
View Article and Find Full Text PDFPancreas cancer is a highly aggressive and rapidly fatal disease. The current standard of care for advanced disease improves survival modestly at best and provides palliation for a minority of patients. The need for new therapies is undisputed.
View Article and Find Full Text PDFOncogenic Kras initiates pancreatic tumorigenesis, while subsequent genetic events shape the resultant disease. We show here that concomitant expression of Kras(G12D) and haploinsufficiency of the Smad4/Dpc4 tumor suppressor gene engenders a distinct class of pancreatic tumors, mucinous cystic neoplasms (MCNs), which culminate in invasive ductal adenocarcinomas. Disease evolves along a progression scheme analogous to, but distinct from, the classical PanIN-to-ductal adenocarcinoma sequence, and also portends a markedly different prognosis.
View Article and Find Full Text PDFThe synergistic interaction between proteasome inhibitors and tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is a promising approach to induce cell death in tumor cells. However, the molecular and biochemical mechanisms of this synergism have been proven to be cell type specific. We therefore focused our investigation on TRAIL-resistant colon carcinoma cells in this study.
View Article and Find Full Text PDFRhabdomyosarcoma (RMS), the most common pediatric soft-tissue sarcoma, has two major histological subtypes: embryonal RMS (ERMS), which has a favorable prognosis, and alveolar RMS (ARMS), which has a poor outcome. Although both forms of RMS express muscle cell-specific markers, only ARMS cells express PAX3-FOXO1a or PAX7-FOXO1a chimeric proteins. In mice, Pax3 and Pax7 play key roles in muscle cell development and differentiation, and FoxO1a regulates myoblast differentiation and fusion; thus, the aberrant regulation of these proteins may contribute to the development of ARMS.
View Article and Find Full Text PDFThe effects of reactive oxygen species (ROS) on tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis in solid cancers have yet to be clearly defined. In this study, we found that the classic uncoupler of oxidative phosphorylation, carbonyl cyanide m-chlorophenylhydrazone (CCCP), induced a reduction in DeltaPsim and generation of ROS. This uncoupling effect enhanced TRAIL-induced apoptosis in TRAIL-resistant human colon carcinoma cell lines (RKO, HT29, and HCT8).
View Article and Find Full Text PDFProtein kinase casein kinase II (CK2) is increased in response to diverse growth stimuli, as well as being elevated in many human cancers examined. We have demonstrated that CK2 is a key survival factor that protects human colon carcinoma cells from TNF-related apoptosis-inducing ligand (TRAIL)-induced apoptosis. We determined that inhibition of CK2 phosphorylation events by DRB (5,6-dichlorobenzimidazole) resulted in dramatic sensitization of tumor cells to TRAIL-induced apoptosis, in the absence of effects in normal cells.
View Article and Find Full Text PDFTumor necrosis factor-related apoptosis-inducing ligand (TRAIL) induces apoptosis in a wide variety of malignant cell lines, in contrast to normal cells, but with considerable heterogeneity in response. Death receptor-mediated apoptosis may be attenuated by a variety of different mechanisms, including phosphorylation-based signaling pathways. We have demonstrated that casein kinase I can attenuate TRAIL-induced apoptosis in human cell lines derived from colon adenocarcinoma (HT29 and HCT8) and pediatric rhabdomyosarcoma (JR1).
View Article and Find Full Text PDFTumor necrosis factor-related apoptosis-inducing ligand (TRAIL) induces apoptosis via the death receptors DR4 and DR5 in transformed cells in vitro and exhibits potent antitumor activity in vivo with minor side effects. Protein kinase casein kinase II (CK2) is increased in response to diverse growth stimuli and is aberrantly elevated in a variety of human cancers. Rhabdomyosarcoma tumors are the most common soft-tissue sarcoma in childhood.
View Article and Find Full Text PDFSignaling pathways involved in survival responses may attenuate the apoptotic response to the cytotoxic tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) in human colon carcinomas. In six lines examined, three were sensitive (GC(3)/c1, VRC(5)/c1, HCT116), HT29 demonstrated intermediate sensitivity, and RKO and HCT8 were resistant to TRAIL-induced apoptosis. Calphostin c [an inhibitor of classic and novel isoforms of protein kinase C (PKC)] sensitized five of six cell lines to TRAIL, whereas Go6976, (inhibitor of classic PKC isoforms), did not influence TRAIL sensitivity.
View Article and Find Full Text PDFTumor necrosis factor related apoptosis inducing ligand (TRAIL) belongs to the Tumor necrosis factor (TNF) family of death-inducing ligands, and signaling downstream of TRAIL ligation to its receptor(s) remains to be fully elucidated. Components of the death-inducing signaling complex (DISC) and TRAIL signaling downstream of receptor activation were examined in TRAIL - sensitive and -resistant models of human rhabdomyosarcoma (RMS). TRAIL ligation induced DISC formation in TRAIL-sensitive (RD, Rh18, Rh30) and TRAIL-resistant RMS (Rh28, Rh36, Rh41), with recruitment of FADD and procaspase-8.
View Article and Find Full Text PDFTransplantation
January 2001
Background: Mycophenolate mofetil (MMF), an ester prodrug of mycophenolic acid (MPA), is a potent immunosuppressive agent used in clinical organ transplantation. MPA preferentially inhibits the type II isoform of inosine monophosphate dehydrogenase, depletes GTP, suppresses transfer of mannose and fucose to glycoproteins, and prevents lymphocyte proliferation in vivo. Whether MMF can also delete activated T cells in vivo by triggering an apoptotic signal was addressed in this study.
View Article and Find Full Text PDFMethotrexate (MTX), a folate antagonist with multiple enzymatic targets, is used in the treatment of malignancies as well as in autoimmune and chronic inflammatory diseases, and ZD1694 (tomudex), a water-soluble quinazoline specific inhibitor of thymidylate synthase (TS), is used in the treatment of adenocarcinomas. In this study, we investigated the effects of these folate analogues on superantigen (SAg)-reactive peripheral T cells in vivo. In BALB/c mice, staphylococcal enterotoxin B (SEB)-induced cytokine secretion, IL-2R (CD25) expression and early deletion of a fraction of SEB-reactive V(beta)8(+) T cells were not impaired by either MTX (7 mg/kg/day) or tomudex (5 mg/kg/day).
View Article and Find Full Text PDF