Gravity has an important role in both the development and maintenance of bone mass. This is most evident in the rapid and intense bone loss observed in both humans and animals exposed to extended periods of microgravity in spaceflight. Here, cohabitating 9-week-old male C57BL/6 mice resided in spaceflight for ~4 weeks.
View Article and Find Full Text PDFThe Kenzan bioprinting method provides a high-resolution biofabrication process by facilitating the fusion of submillimeter cell aggregates (spheroids) into larger tissue constructs on a needle array that is removed upon spheroid fusion. Although the method is relatively straightforward in principle, Kenzan method bioprinting relies on a complex 3D bioprinter (Regenova Bio 3D Printer, Cyfuse, K.K.
View Article and Find Full Text PDFLimitations in scaffold material properties, such as sub-optimal degradation time, highlight the need for alternative approaches to engineer tissues. One emerging solution for fabricating tissue constructs is scaffold-free tissue engineering. To facilitate this approach, three-dimensional (3D) bioprinting technology (Regenova Bio 3D Printer) has been developed to construct complex geometric shapes from discrete cellular spheroids without exogenous scaffolds.
View Article and Find Full Text PDFIn academia, manuscripts serve as an important component of career development. The past several years have seen heightened evaluation of the role of the gender gap in career advancement, as well as other bibliometric changes in publications. We therefore analyzed authorship and publication trends in the Annals of Biomedical Engineering over the past three decades (one complete year of manuscripts for each decade; 1986, 1996, 2006, and 2016).
View Article and Find Full Text PDFUnlabelled: A persistent challenge in enhancing gene therapy is the transient availability of the target gene product. This is particularly true in tissue engineering applications. The transient exposure of cells to the product could be insufficient to promote tissue regeneration.
View Article and Find Full Text PDFObjective: The goal of this study was to compare the efficacy of endogenous upregulation of IGF-I by gene therapy and exogenous addition of insulin-like growth factor I (IGF-I) in enhancing proteoglycan synthesis by skeletally mature and neonatal chondrocytes. Chondrocyte transplantation therapy is a common treatment for focal cartilage lesions, with both mature and neonatal chondrocytes used as a cell source. Additionally, gene therapy strategies to upregulate growth factors such as IGF-I have been proposed to augment chondrocyte transplantation therapies.
View Article and Find Full Text PDF