Background: Pluripotent cell-derived islet replacement therapy offers promise for treating Type 1 diabetes (T1D), but concerns about uncontrolled cell proliferation and tumorigenicity present significant safety challenges. To address the safety concern, this study aims to establish a proof-of-concept for a glucose-responsive, insulin-secreting cell line integrated with a built-in FailSafe kill-switch.
Method: We generated β cell-induced progenitor-like cells (βiPLCs) from primary mouse pancreatic β cells through interrupted reprogramming.
This study employs computational chemistry to investigate the detailed mechanisms behind the dissolution of thermally activated clays, which are emerging as promising supplementary cementitious materials (SCM) for enhancing concrete properties and reducing carbon footprint. Specifically, the study employs a first-principles methodology for obtaining activation energies (Δ) involved in the dissolution of metakaolinite (MK) silicate units using NaOH and KOH activators. The investigation includes considerations of hydrolyzing oxo-bridging covalent bonds, van der Waals (vdW) interactions, and the influence of water molecules surrounding alkali cations.
View Article and Find Full Text PDFGeopolymers offer a potential alternative to ordinary Portland cement owing to their performance in mechanical and thermal properties, as well as environmental benefits stemming from a reduced carbon footprint. This paper endeavors to build upon prior atomistic computational work delving deeper into the intricate relationship between pH levels and the resulting material's properties, including pore size distribution, geopolymer nucleate cluster dimensions, total system energy, and monomer poly-condensation behavior. Coarse-grained Monte Carlo (CGMC) simulation inputs include tetrahedral geometry and binding energy parameters derived from DFT simulations for aluminate and silicate monomers.
View Article and Find Full Text PDFThe immunogenicity of transplanted allogeneic cells and tissues is a major hurdle to the advancement of cell therapies. Here we show that the overexpression of eight immunomodulatory transgenes (Pdl1, Cd200, Cd47, H2-M3, Fasl, Serpinb9, Ccl21 and Mfge8) in mouse embryonic stem cells (mESCs) is sufficient to immunologically 'cloak' the cells as well as tissues derived from them, allowing their survival for months in outbred and allogeneic inbred recipients. Overexpression of the human orthologues of these genes in human ESCs abolished the activation of allogeneic human peripheral blood mononuclear cells and their inflammatory responses.
View Article and Find Full Text PDFHuman induced pluripotent stem cell (hiPSC)-derived cardiomyocytes (hiPSC-CMs) hold tremendous potential for cardiovascular disease modeling, drug screening, personalized medicine, and pathophysiology studies. The availability of a robust protocol and functional assay for studying phenotypic behavior of hiPSC-CMs is essential for establishing an in vitro disease model. Many heart diseases manifest due to changes in the mechanical strain of cardiac tissue.
View Article and Find Full Text PDFThe cognitive preparation of an operation without overt motor execution is referred to as imagery (of any kind). Over the last two decades of progress in brain timing studies, the timing of imagery has received little focus. This study compared the time perception of ten professional violinists' actual and imagery performances to see if such an analysis could offer a different model of timing in musicians' imagery skills.
View Article and Find Full Text PDFNanomaterials (Basel)
March 2023
Metakaolin (MK) is a high-quality, reactive nanomaterial that holds promising potential for large-scale use in improving the sustainability of cement and concrete production. It can replace cement due to its pozzolanic reaction with calcium hydroxide and water to form cementitious compounds. Therefore, understanding the dissolution mechanism is crucial to fully comprehending its pozzolanic reactivity.
View Article and Find Full Text PDFThis work presents a 3D off-lattice coarse-grained Monte Carlo (CGMC) approach to simulate the nucleation of alkaline aluminosilicate gels, their nanostructure particle size, and their pore size distribution. In this model, four monomer species are coarse-grained with different particle sizes. The novelty is extending the previous on-lattice approach from White et al.
View Article and Find Full Text PDFThe first goal for this experiment was to determine the structural and technological characteristics for methylcellulose (MC), carboxymethyl cellulose (CMC), and microcrystalline cellulose (MCC), while the subsequent goal for this experiment was to determine the application of the modified cellulose ingredients in reduced-fat meat batters. Each ingredient was characterized and then evaluated as a fat replacer using meat batters with targeted fat levels of 20%, 10%, and 5%. It was determined that each modified cellulose ingredient was unique in its structural and technological properties which caused significant effects on the physiochemical properties of the meat batters.
View Article and Find Full Text PDFCement clinkers containing mainly belite (β-CS as a model crystal), replacing alite, offer a promising solution for the development of environmentally friendly solutions to reduce the high level of CO emissions in the production of Portland cement. However, the much lower reactivity of belite compared to alite limits the widespread use of belite cements. Therefore, this work presents a fundamental atomistic computational approach for comprehending and quantifying the mesoscopic forward dissolution rate of β-CS, applied to two reactive crystal facets of (100) and (1¯00).
View Article and Find Full Text PDFIt is maintained that a classification or taxonomy of functions is required to reflect cognitive functions. On the basis of the epistemological position of a pragmatic monism, it can be stated that cognitive functions are evolutionary products, and furthermore that their availability is dependent on the structural and operational integrity of neural modules and networks. Loss of functions as a consequence of local injuries or the disruption of neural networks can be used to develop a catalog of functions.
View Article and Find Full Text PDFA major concern in the modern cement industry is considering how to minimize the CO footprint. Thus, cements based on belite, an impure clinker mineral (CaO)SiO (CS in cement chemistry notation), which forms at lower temperatures, is a promising solution to develop eco-efficient and sustainable cement-based materials, used in enormous quantities. The slow reactivity of belite plays a critical role, but the dissolution mechanisms and kinetic rates at the atomistic scale are not known completely yet.
View Article and Find Full Text PDFLife, whatsoever it is, is a temporal flux. Everything is doomed to change often apparently beyond our awareness. My body appears totally different now, so does my mind.
View Article and Find Full Text PDFPortlandite, as a most soluble cement hydration reaction product, affects mechanical and durability properties of cementitious materials. In the present work, an atomistic kinetic Monte Carlo (KMC) upscaling approach is implemented in MATLAB code in order to investigate the dissolution time and morphology changes of a hexagonal platelet portlandite crystal. First, the atomistic rate constants of individual Ca dissolution events are computed by a transition state theory equation based on inputs of the computed activation energies (Δ) obtained through the metadynamics computational method (Part 1 of paper).
View Article and Find Full Text PDFThe current contribution proposes a multi-scale bridging modeling approach for the dissolution of crystals to connect the atomistic scale to the (sub-) micro-scale. This is demonstrated in the example of dissolution of portlandite, as a relatively simple benchmarking example for cementitious materials. Moreover, dissolution kinetics is also important for other industrial processes, e.
View Article and Find Full Text PDF"Seeing with the mind's eye" and "hearing with the mind's ear" are two common indicators of musical imagery, and they can be referred to as "visual" and "auditory" musical imagery. However, a question remains open, that is, whether visual and auditory imagery of the same musical composition share the same neural mechanisms. Moreover, how can neural mechanisms guarantee the temporal flow of "musical imagery"? To answer these questions, we report here a preliminary single case study using functional magnetic resonance imaging with an eminent composer who imagined one of his compositions in two states of mind as compared to his resting-state activity.
View Article and Find Full Text PDFGraphene is a two-dimensional material, with exceptional mechanical, electrical, and thermal properties. Graphene-based materials are, therefore, excellent candidates for use in nanocomposites. We investigated reduced graphene oxide (rGO), which is produced easily by oxidizing and exfoliating graphite in calcium silicate hydrate (CSHs) composites, for use in cementitious materials.
View Article and Find Full Text PDFHuman pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) hold great promise for cardiovascular disease modeling, drug screening and personalized medicine. A crucial requirement to establish an hPSC-CM-based disease model is the availability of a reliable differentiation protocol and a functional assessment of phenotypic properties of CMs in a disease context. Characterization of relative changes in contractile behavior of CMs can provide insight not only about drug effects but into the pathogenesis of cardiovascular diseases.
View Article and Find Full Text PDFStrontium, calcium, and magnesium silicate hydrate phases are synthesized by the reaction between silica and solution of metal hydroxides. The kinetics of the reaction is recorded using a quartz crystal microbalance (QCM), continuously monitoring the change in frequency and dissipation energy. Based on QCM results, it is shown that properties of solutions like the pH-value or the type of ions play a pivotal function on the rate-determining stage of the reaction, the thickness of the diffuse layer, the formation of carbonates, as well as the kinetics of the formed phases.
View Article and Find Full Text PDFThree dimensional (3D) bioplotting requires appropriate crosslinkers to crosslink the hydrogel precursor while simultaneously maintaining the viability of embedded cells. However, the evaluation and comparison of various types of crosslinkers in bioplotting remains underexplored to date. This paper presents our study of the influence of three ionic crosslinkers-calcium chloride (CaCl), barium chloride (BaCl), and zinc chloride (ZnCl)-on the mechanical and biological properties of 3D bioplotted alginate scaffolds.
View Article and Find Full Text PDFOver the past decades, significant progress has been achieved in the field of tissue engineering (TE) to restore/repair damaged tissues or organs and, in this regard, scaffolds made from biomaterials have played a critical role. Notably, recent advances in biomaterials and three-dimensional (3D) printing have enabled the manipulation of two or more biomaterials of distinct, yet complementary, mechanical and/or biological properties to form so-called hybrid scaffolds mimicking native tissues. Among various biomaterials, hydrogels synthesized to incorporate living cells and/or biological molecules have dominated due to their hydrated tissue-like environment.
View Article and Find Full Text PDFThree-dimensional (3D) printing is an emerging technology for the fabrication of scaffolds to repair/replace damaged tissue/organs in tissue engineering. This paper presents our study on 3D printed alginate scaffolds treated with phosphate buffered saline (PBS) and polyethyleneimine (PEI) coating and their impacts on the surface morphology and cellular response of the printed scaffolds. In our study, sterile alginate was prepared by means of the freeze-drying method and then, used to prepare the hydrogel for 3D printing into calcium chloride, forming 3D scaffolds.
View Article and Find Full Text PDFTissue Eng Part C Methods
February 2018
Biofabrication of cell supportive cardiac patches that can be directly implanted on myocardial infarct is a potential solution for myocardial infarction repair. Ideally, cardiac patches should be able to mimic myocardium extracellular matrix for rapid integration with the host tissue, raising the need to develop cardiac constructs with complex features. In particular, cardiac patches should be electrically conductive, mechanically robust and elastic, biologically active and prevascularized.
View Article and Find Full Text PDFThree-dimensional (3D)-bioprinting techniques may be used to modulate electrical/mechanical properties and porosity of hydrogel constructs for fabrication of suitable cardiac implants. Notably, characterization of these properties after implantation remains a challenge, raising the need for the development of novel quantitative imaging techniques for monitoring hydrogel implant behavior in situ. This study aims at (i) assessing the influence of hydrogel bioprinting patterns on electrical/mechanical behavior of cardiac implants based on a 3D-printing technique and (ii) investigating the potential of synchrotron X-ray phase-contrast imaging computed tomography (PCI-CT) for estimating elastic modulus/impedance/porosity and microstructural features of 3D-printed cardiac implants in situ via an ex vivo study.
View Article and Find Full Text PDF