The aim of the performed studies was to thoroughly examine the internal structure of self-assembled nanocarriers (i.e., polymeric micelles-PMs) by means of a hydrophobic phthalocyanine probe in order to identify the crucial features that are required to enhance the photoactive probe stability and reactivity.
View Article and Find Full Text PDFOne of the most important properties of hydrophobically functionalized polyelectrolytes (HF-PEs) and their assemblies is their ability to encapsulate hydrophobic/amphiphilic agents and provide release on demand of the entrapped payload. The aim of the present work was to synthesize and study self-organization behavior in aqueous solution of hydrophobically functionalized poly(acrylic acid) (PAA) comprising the ester-type pH labile moiety with various degrees of hydrophobization and side-chain lengths in the absence and presence of appropriate mono- and polyvalent electrolytes (i.e.
View Article and Find Full Text PDFMutations in the myelin protein zero (MPZ) gene are the third most frequent cause of hereditary motor and sensory neuropathies (HMSN), also called Charcot-Marie-Tooth disorders (CMT). Only in case of recurrent mutations occurring in the MPZ gene is it possible to draw phenotype-genotype correlations essential for establishing the prognosis and outcomes of CMT1. We have surveyed a cohort of 67 Polish patients from CMT families with demyelinating neuropathy for mutations in the MPZ gene.
View Article and Find Full Text PDFLittle is known about the molecular background of clinical variability of Charcot-Marie-Tooth type 1A (CMT1A) disease and hereditary neuropathy with liability to pressure palsies (HNPP). The CMT1A and HNPP disorders result from duplication and deletion of the PMP22 gene respectively. In a series of studies performed on affected animal transgenic models of CMT1A disease, expression of the PMP22 gene (gene dosage) was shown to correlete with severity of CMT course (gene dosage effect).
View Article and Find Full Text PDFHereditary neuropathy with liability to pressure palsies (HNPP) is manifested by a spectrum of phenotypes, from the classical HNPP course associated with intermittent nerve palsies to a neuropathy resembling Charcot-Marie-Tooth type 1 (CMT1) disease. The majority of HNPP cases are associated with submicroscopical deletions in the 17p11.2-p12 region containing the PMP22 gene, while PMP22 point mutations are rare, representing about 15% of HNPP cases.
View Article and Find Full Text PDF