Introduction: Nanosized particles may enable therapeutic modulation of immune responses by targeting dendritic cell (DC) networks in accessible organs such as the lung. To date, however, the effects of nanoparticles on DC function and downstream immune responses remain poorly understood.
Methods: Bone marrow-derived DCs (BMDCs) were exposed in vitro to 20 or 1,000 nm polystyrene (PS) particles.
Factor I (FI) is the major complement inhibitor that degrades activated complement components C3b and C4b in the presence of specific cofactors. Complete FI deficiency results in secondary complement deficiency due to uncontrolled spontaneous alternative pathway activation. In this study we describe two unrelated patients with complete FI deficiency and undetectable alternative complement pathway activity.
View Article and Find Full Text PDFInt J Biochem Cell Biol
September 2007
The recognition of bacterial lipopolysaccharide (LPS) is principally mediated by either membrane-bound or soluble form of the glycoprotein CD14 and CD14-associated signal transducer, toll-like receptor 4 (TLR4). Recent findings indicate that the serine protease inhibitor, alpha1-antitrypsin (AAT), may not only afford protection against proteolytic injury, but may also neutralize microbial activities and affect regulation of innate immunity. We postulated that AAT affects monocyte responses to LPS by regulating CD14 expression and soluble CD14 release.
View Article and Find Full Text PDFRegulation of serine protease activity is considered to be the sole mechanism for the function of alpha1-antitrypsin (AAT). However, recent reports of the anti-inflammatory effects of AAT are hard to reconcile with this classical mechanism. We discovered that two key activities of AAT in vitro, namely inhibition of endotoxin-stimulated tumor necrosis factor-alpha and enhancement of interleukin-10 in human monocytes, are mediated by an elevation of cAMP and activation of cAMP-dependent protein kinase A.
View Article and Find Full Text PDF