Oral vaccination of wildlife has shown to be a very effective management tool in rabies control. Evaluation of the genetic stability of vaccine viruses before distributing vaccine baits in the environment is essential because all available oral rabies vaccines, including the genetically engineered rabies virus vaccine strain SPBN GASGAS (Rabitec), are based on replication-competent viruses. To evaluate the genetic stability of this vaccine strain, five serial passages of the Master Seed Virus (MSV) in the production cell line BHK21 Cl13 were performed.
View Article and Find Full Text PDFMutualistic symbiotic associations between multicellular eukaryotes and their microbiota are driven by the exchange of nutrients in a quid pro quo manner. In the widespread arbuscular mycorrhizal (AM) symbiosis involving plant roots and Glomeromycotina fungi, the mycobiont is supplied with carbon through photosynthesis, which in return supplies the host plant with essential minerals such as phosphorus (P). Most terrestrial plants are largely dependent on AM fungi for nutrients, which raises the question of how plants that are unable to form a functional AM sustain their P nutrition.
View Article and Find Full Text PDFHigh-throughput sequencing (HTS) allows detection of known and unknown viruses in samples of broad origin. This makes HTS a perfect technology to determine whether or not the biological products, such as vaccines are free from the adventitious agents, which could support or replace extensive testing using various in vitro and in vivo assays. Due to bioinformatics complexities, there is a need for standardized and reliable methods to manage HTS generated data in this field.
View Article and Find Full Text PDFMaize, a main crop worldwide, establishes a mutualistic symbiosis with arbuscular mycorrhizal (AM) fungi providing nutrients to the roots from soil volumes which are normally not in reach of the non-colonized root. The mycorrhizal phosphate uptake pathway (MPU) spans from extraradical hyphae to root cortex cells housing fungal arbuscules and promotes the supply of phosphate to the mycorrhizal host in exchange for photosynthetic carbon. This symbiotic association with the mycobiont has been shown to affect plant host nutritional status and growth performance.
View Article and Find Full Text PDFMicrobiota colonizing plant roots and their vicinity were shown not to be just random associations, but compose, at least to some extent, host-selected microbial consortia. The plant physiological status, especially the nutrient status, prompts changes in plant morphology and metabolism, which successively imposes a selective pressure on microbial communities. It is well established that a low phosphate status of the host plant activates the molecular machinery underlying the development of mutualistic associations in the host root with arbuscular mycorrhizal fungi (AMF).
View Article and Find Full Text PDFPhosphorus in plant cells occurs in inorganic form as both ortho- and pyrophosphate or bound to organic compounds, like e.g., nucleotides, phosphorylated metabolites, phospholipids, phosphorylated proteins, or phytate as P storage in the vacuoles of seeds.
View Article and Find Full Text PDFMost land plants establish mutualistic interactions with arbuscular mycorrhizal (AM) fungi. Intracellular accommodation of AM fungal symbionts remodels important host traits like root morphology and nutrient acquisition. How mycorrhizal colonization impacts plant microbiota is unclear.
View Article and Find Full Text PDFPlants respond to phosphorus (P) limitation through an array of morphological, physiological and metabolic changes which are part of the phosphate (Pi) starvation response (PSR). This response influences the establishment of the arbuscular mycorrhizal (AM) symbiosis in most land plants. It is, however, unknown to what extent available P and the PSR redefine plant interactions with the fungal microbiota in soil.
View Article and Find Full Text PDFThe vacuole is an important subcellular compartment that serves as main phosphate storage in plants among other functions. Three recent studies shed light on the underlying molecular mechanisms for vacuolar phosphate transport that had long remained unknown.
View Article and Find Full Text PDFArh Hig Rada Toksikol
September 2014
Legume crops are exposed to infection by fungal pathogens, which often results in contamination with mycotoxins. The aim of this study was to evaluate the level of field resistance/susceptibility of edible and fodder pea cultivars to the colonization of seeds by fungal pathogens in two subsequent seasons, as well as to identify the pathogens present in the seeds of the tested cultivars. Alternaria spp.
View Article and Find Full Text PDF