Continuing our efforts to obtain potent and selective analogues of AVP we synthesized and pharmacologically evaluated ten new compounds modified at position 2 with alpha-2-indanylglycine or its D-enantiomer (Igl or D-Igl, respectively). All the peptides were tested for pressor, antidiuretic, and in vitro uterotonic activities. We also determined the binding affinity of these compounds to human OT receptor.
View Article and Find Full Text PDFIn this study we present the synthesis and some pharmacological properties of nine new analogues of arginine vasopressin modified in the N-terminal part of the molecule with 2-aminoindane-2-carboxylic acid (Aic). The peptides were tested for their in vitro uterotonic and in vivo pressor and antidiuretic activities. One of the new peptides, [Mpa1,Aic2,Val4,D-Arg8]VP, exhibited an antidiuretic activity similar to that of [Mpa1,D-Arg8]VP, thus being one of the most potent antidiuretic vasopressin analogues reported to date.
View Article and Find Full Text PDFSynthesis of thirteen new analogues of arginine vasopressin (AVP) has been described. Amino acid residues at positions 2 and 3 of AVP, [3-mercaptopropionic acid (Mpa)(1)]AVP (dAVP), [Mpa(1),d-Arg(8)]VP (dDAVP) and [Mpa(1),Val(4),d-Arg(8)]VP (dVDAVP) were replaced with one amino acid residue using sterically constrained non-proteinogenic amino acids, 4-aminobenzoic acid (Abz), cis-4-aminocyclohexanecarboxylic acid (ach) or its trans-isomer (Ach). In the case of a potent V(1a) antagonist, [1-mercaptocyclohexaneacetic acid (Cpa)(1)]AVP, only one similar analogue has been prepared by replacing positions 2 and 3 with Abz.
View Article and Find Full Text PDFThe present work is part of our studies aimed at clarifying the influence of steric constraints in the N-terminal part of arginine vasopressin (AVP) and its analogs on the pharmacological activity of the resulting peptides. We describe the synthesis of eight new analogs of AVP or [3-mercaptopropionic acid (Mpa)]AVP (dAVP) substituted at positions 2 and 3 or 3 and 4 with two diastereomers of 4-aminopyroglutamic acid. The steric constraints provided by this modification turned out, however, so strong that all the peptides were inactive in all of the bioassays (pressor, antidiuretic and uterotonic tests).
View Article and Find Full Text PDFIt is generally accepted that the conformation of the N-terminal part of neurohypophyseal hormones analogues is important for their pharmacological activity. In this work, we decided to investigate how the substitution of positions 2 and 3 with the ethylene-bridged dipeptide would alter the pharmacological properties of OT, [Mpa1]OT, and [Cpa1]OT (OT=oxytocin; Mpa=3-mercaptopropionic acid; Cpa=1-mercaptocyclohexaneacetic acid) and to investigate how a bulky 3,3-diphenyl-L-alanine residue incorporated in position 2 of AVP, [Mpa1]AVP, and [Cpa1]AVP (AVP=arginine vasopressin) would change the pharmacological profile of the compounds. The next analogues, [Val4]AVP, [Mpa1,Val4]AVP, and [Cpa1,Val4]AVP, had N-benzyl-L-alanine introduced at position 3.
View Article and Find Full Text PDFThis study describes the synthesis and some pharmacological properties of eight new analogues of arginine vasopressin (AVP) substituted at position 2 or 3 with cycloleucine (1-aminocyclopentane-1-carboxylic acid, Apc). All new peptides were tested for their pressor, antidiuretic and uterotonic in vitro potency. The Apc3 modification resulted in an almost complete loss of potency in all three tests, which is interpreted as a loss of interaction with all three neurohypophyseal hormone receptors.
View Article and Find Full Text PDFIn this study, we described the synthesis and some pharmacological properties of four new analogues of arginine vasopressin (AVP). Two peptides are substituted in position 2 with L-1-naphthylalanine (L-1-Nal) or its D-enantiomer and in position 4 with valine. In the further two compounds, we combined the above modifications with placement into position 1 of 3-mercaptopropionic acid residue (Mpa).
View Article and Find Full Text PDFThis study describes the synthesis and some pharmacological properties of ten new analogues of arginine vasopressin (AVP) containing a conformationally constrained dipeptide fragment in the N-terminal part of their molecules. Amino acid residues in positions 2 and 3 of AVP and some of its agonistic analogues were replaced with -Phe-Phe and D-Phe-D-Phe, dipeptides having a -CH2-CH2- link bridging two nitrogens. All the new peptides were tested for vasopressor and antidiuretic activities.
View Article and Find Full Text PDFThe synthesis and some pharmacological properties of two sets of analogues, one consisting of six peptides with 1-aminocyclohexane-1-carboxylic acid (Acc) in position 2 and the other with the amino acid in position 3, have been described. All the peptides were tested for their pressor, antidiuretic, and uterotonic in vitro activities. The Acc(2) modification has been shown to selectively modulate the activities of the analogues.
View Article and Find Full Text PDF