Publications by authors named "Iyappan Ramachandiran"

Glutamyl-prolyl-tRNA synthetase (EPRS1) is a bifunctional aminoacyl-tRNA-synthetase (aaRS) essential for decoding the genetic code. EPRS1 resides, with seven other aaRSs and three noncatalytic proteins, in the cytoplasmic multi-tRNA synthetase complex (MSC). Multiple MSC-resident aaRSs, including EPRS1, exhibit stimulus-dependent release from the MSC to perform noncanonical activities distinct from their primary function in protein synthesis.

View Article and Find Full Text PDF

Hypomyelinating leukodystrophy (HLD) is an autosomal recessive disorder characterized by defective central nervous system myelination. Exome sequencing of two siblings with severe cognitive and motor impairment and progressive hypomyelination characteristic of HLD revealed homozygosity for a missense single-nucleotide variant (SNV) in EPRS1 (c.4444 C > A; p.

View Article and Find Full Text PDF

Introduction: The Aster-C protein (encoded by the gene) is an endoplasmic reticulum (ER) resident protein that has been reported to transport cholesterol from the plasma membrane to the ER. Although there is a clear role for the closely-related Aster-B protein in cholesterol transport and downstream esterification in the adrenal gland, the specific role for Aster-C in cholesterol homeostasis is not well understood. Here, we have examined whole body cholesterol balance in mice globally lacking Aster-C under low or high dietary cholesterol conditions.

View Article and Find Full Text PDF

Recent genome-wide association studies (GWAS) have identified a link between single-nucleotide polymorphisms (SNPs) near the MBOAT7 gene and advanced liver diseases. Specifically, the common MBOAT7 variant (rs641738) associated with reduced MBOAT7 expression is implicated in non-alcoholic fatty liver disease (NAFLD), alcohol-associated liver disease (ALD), and liver fibrosis. However, the precise mechanism underlying MBOAT7-driven liver disease progression remains elusive.

View Article and Find Full Text PDF

Adiponectin, an adipocyte-specific secretory protein encoded by the gene has a causal role in insulin resistance. Anti-diabetic drugs increase plasma adiponectin by a poorly understood, post-transcriptional mechanism enhancing insulin sensitivity. Deletion analysis of a reporter bearing the mouse mRNA 5'-leader identified an inhibitory -regulatory sequence.

View Article and Find Full Text PDF

Ferroptosis is a form of regulated cell death with roles in degenerative diseases and cancer. Excessive iron-catalyzed peroxidation of membrane phospholipids, especially those containing the polyunsaturated fatty acid arachidonic acid (AA), is central in driving ferroptosis. Here, we reveal that an understudied Golgi-resident scaffold protein, MMD, promotes susceptibility to ferroptosis in ovarian and renal carcinoma cells in an ACSL4- and MBOAT7-dependent manner.

View Article and Find Full Text PDF

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of COVID-19, generates multiple protein-coding, subgenomic RNAs (sgRNAs) from a longer genomic RNA, all bearing identical termini with poorly understood roles in regulating viral gene expression. Insulin and interferon-gamma, two host-derived, stress-related agents, and virus spike protein, induce binding of glutamyl-prolyl-tRNA synthetase (EPRS1), within an unconventional, tetra-aminoacyl-tRNA synthetase complex, to the sgRNA 3'-end thereby enhancing sgRNA expression. We identify an EPRS1-binding sarbecoviral pan-end activating RNA (SPEAR) element in the 3'-end of viral RNAs driving agonist-induction.

View Article and Find Full Text PDF

Transcriptional and post-transcriptional mechanisms diversify the proteome beyond gene number, while maintaining a sequence relationship between original and altered proteins. A new mechanism breaks this paradigm, generating novel proteins by translating alternative open reading frames (Alt-ORFs) within canonical host mRNAs. Uniquely, 'alt-proteins' lack sequence homology with host ORF-derived proteins.

View Article and Find Full Text PDF

Aminoacyl-tRNA synthetases (AARS) participate in decoding the genome by catalyzing conjugation of amino acids to their cognate tRNAs. During evolution, biochemical and environmental conditions markedly influenced the sequence and structure of the 20 AARSs, revealing adaptations dictating canonical and orthogonal activities. Here, we investigate the function of the appended Zn-binding domain (ZBD) in the bifunctional AARS, glutamyl-prolyl-tRNA synthetase (GluProRS).

View Article and Find Full Text PDF
Article Synopsis
  • Recent research has found a genetic variant (rs641738) linked to higher risk of non-alcoholic fatty liver disease (NAFLD) and related liver conditions in individuals with viral hepatitis.
  • The study indicates that losing the function of a specific gene (MBOAT7) increases liver disease progression, which was previously suggested but not formally tested.
  • Findings in mice reveal that loss of MBOAT7 leads to the build-up of certain lipids (lysophosphatidylinositol) that cause liver inflammation and fibrosis, highlighting MBOAT7's crucial role in preventing NAFLD.
View Article and Find Full Text PDF

Protein phosphorylation is an important post-translational modification that can regulate the protein function. The current knowledge on the phosphorylation status of plant oil body (OB) proteins is inadequate. This present study identifies the distinct physiological substrates of Arabidopsis serine/threonine/tyrosine protein kinase (STYK) and its role in seed oil accumulation; the role of Arabidopsis OLE1, a major seed OB protein has also been elucidated.

View Article and Find Full Text PDF

Plant oils are stored in oleosomes or oil bodies, which are surrounded by a monolayer of phospholipids embedded with oleosin proteins that stabilize the structure. Recently, a structural protein, Oleosin3 (OLE3), was shown to exhibit both monoacylglycerol acyltransferase and phospholipase A(2) activities. The regulation of these distinct dual activities in a single protein is unclear.

View Article and Find Full Text PDF

In plants, fatty oils are generally stored in spherical intracellular organelles referred to as oleosomes that are covered by proteins such as oleosin. Seeds with high oil content have more oleosin than those with low oil content. However, the exact role of oleosin in oil accumulation is thus far unclear.

View Article and Find Full Text PDF