Publications by authors named "Iwona Zarzyka"

Article Synopsis
  • The study examined how thermal aging, UV exposure, and stress softening impact rubber modified with two types of nanoclays, Cloisite Na and Cloisite 20A, by measuring properties like tensile strength and strain at break before and after aging.
  • Results indicated that both tensile strength and strain at break decreased by about 50% after one week of aging, attributed to the breaking of chemical bonds between the rubber and nanoparticles.
  • Additionally, while thermal aging increased the modulus of elasticity for different rubber samples, only the unmodified rubber showed a significant decrease in shape retention; overall, nanocomposite properties varied differently under aging and UV conditions.*
View Article and Find Full Text PDF

Nanocomposite flexible polyurethane foams (nFPUfs) were obtained by modifying the polyurethane formulation by adding a halloysite nano-filler in the amount of one to five parts by weight per hundred parts of used polyol (php). Flexible polyurethane (PU) foams with an open-cell structure and with a beneficial SAG factor were obtained. Premixes with nano-filler had a lower reactivity than the reference PU system.

View Article and Find Full Text PDF

The growing demand for products made of polymeric materials, including the commonly used polypropylene (PP), is accompanied by the problem of storing and disposing of non-biodegradable waste, increasing greenhouse gas emissions, climate change and the creation of toxic products that constitute a health hazard of all living organisms. Moreover, most of the synthetic polymers used are made from petrochemical feedstocks from non-renewable resources. The use of petrochemical raw materials also causes degradation of the natural environment.

View Article and Find Full Text PDF

In the present work, hybrid nanobiocomposites based on poly(3-hydroxybutyrate), P3HB, with the use of aromatic linear polyurethane as modifier and organic nanoclay, Cloisite 30B, as a nanofiller were produced. The aromatic linear polyurethane (PU) was synthesized in a reaction of diphenylmethane 4,4'-diisocyanate and polyethylene glycol with a molecular mass of 1000 g/mole. The obtained nanobiocomposites were characterized by the small-angle X-ray scattering technique, scanning electron microscopy, Fourier infrared spectroscopy, thermogravimetry, and differential scanning calorimetry, and moreover, their selected mechanical properties, biodegradability, and cytotoxicity were tested.

View Article and Find Full Text PDF

Polymer biocompositions of poly(3-hydroxybutyrate) (P3HB) and linear polyurethanes (PU) with aromatic rings were produced by melt-blending at different P3HB/PU weight ratios (100/0, 95/5, 90/10, and 85/15). Polyurethanes have been prepared with 4,4'-diphenylmethane diisocyanate and polyethylene glycols with molar masses of 400 g/mol (PU400), 1000g/mol (PU1000), and 1500 g/mol (PU1500). The compatibility and morphology of the obtained polymer blends were determined by infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and differential scanning calorimetry (DSC).

View Article and Find Full Text PDF

This study investigated the successful synthesis and characterization of nonisocyanate polyurethanes (NIPUs) based on polylactide. The NIPUs were synthesized by a condensation reaction of oligomers with hard segments (HSs) and synthesized carbamate-modified polylactic acid containing flexible segments (FSs). The oligomers with HSs were prepared from phenolsulfonic acid (PSA) or a mixture of PSA and hydroxynaphthalenesulfonic acid (HNSA), urea and formaldehyde.

View Article and Find Full Text PDF

Due to the growing interest in biopolymers, biosynthesizable and biodegradable polymers currently occupy a special place. Unfortunately, the properties of native biopolymers make them not good enough for use as substitutes for conventional polymers. Therefore, attempts are being made to modify their properties.

View Article and Find Full Text PDF

The polymeric cytisine-enriched fibers based on poly(3-hydroxybutyrate) were obtained using electrospinning method. The biocompatibility study, advanced thermal analysis and release of cytisine from the poly(3-hydroxybutyrate) fibers were carried out. The nanofibers' morphology was evaluated by scanning electron microscopy.

View Article and Find Full Text PDF

This article presents a review on the recent advances in the field of ternary diglycidyl ether of bisphenol A epoxy nanocomposites containing nanoparticles and other modifiers. Particular attention is paid to their mechanical and thermal properties. The properties of epoxy resins were improved by incorporating various single toughening agents, in solid or liquid states.

View Article and Find Full Text PDF

The characterization of cytisine (CYT) and its blends with poly(lactic acid) was performed using thermal analysis, elemental analysis, infrared spectroscopy, and powder X-ray diffractometry. The heat capacities, total enthalpy, and phase transitions of CYT were established from 1.8 to 448.

View Article and Find Full Text PDF

This paper presents an attempt to improve the properties of poly(3-hydroxybutyrate) (P3HB) using linear aliphatic polyurethane (PU400) and organomodified montmorillonite (MMT)-(Cloisite30B). The nanostructure of hybrid nanobiocomposites produced by extrusion was analyzed by X-ray diffraction and transmission electron microscopy, and the morphology was analyzed by scanning electron microscopy. In addition, selected mechanical properties and thermal properties were studied by thermogravimetric analysis, TGA, and differential scanning calorimetry, DSC.

View Article and Find Full Text PDF

Poly(3-hydroxybutyrate) (P3HB) is the most important of the polyhydroxyalkanoates. It is biosynthesized, biodegradable, biocompatible, and shows no cytotoxicity and mutagenicity. P3HB is a natural metabolite in the human body and, therefore, it could replace the synthetic, hard-to-degrade polymers used in the production of implants.

View Article and Find Full Text PDF

Purpose: Poly(3-hydroxybutyrate) (P3HB) is a biopolymer, but storing products from P3HB causes the deterioration of their properties leading to their brittleness. P3HB has also low thermal stability. Its melting point almost equals its degradation temperature.

View Article and Find Full Text PDF

The objective of the studies was to synthesize and characterize new mono- and diesters with an imidazoquinolin-2-one ring with the use of 2,3-dihydro-2-thioxo-1H-imidazo[4 ,5-c]-quinolin-4(5)-ones and ethyl bromoacetate. The products were isolated at high yield and characterized by instrumental methods (IR, H-, C-, and N- NMR, MS-ESI, HR-MS, EA). In order to clarify the places of substitution and the structure of the derivatives obtained, molecular modeling of substrates and products was performed.

View Article and Find Full Text PDF

Poly(-isopropylacrylamide) (PNIPA), as a smart polymer, can be applied for drug delivery systems. This amorphous polymer can be exposed on a structural recovery process during the storage and transport of medicaments. For the physical aging times up to one year, the structural recovery for PNIPA was studied by advanced thermal analysis.

View Article and Find Full Text PDF

Poly(3-hydroxybutyrate) is a biopolymer used to production of implants in the human body. On the other hand, the physical and mechanical properties of poly(3-hydroxybutyrate) are compared to the properties of isotactic polypropylene what makes poly(3-hydroxybutyrate) possible substitute for polypropylene. Unfortunately, the melting point of poly(3-hydroxybutyrate) is almost equal to its degradation temperature what gives very narrow window of its processing conditions.

View Article and Find Full Text PDF

The one-pot multicomponent synthesis of oligoetherols containing azacycles is described. They were obtained by reaction of isocyanuric, barbituric, or uric acid or melamine with glycidol and alkylene carbonates. The isolated products were characterized by physical methods and their properties were compared with the same compounds obtained in twostep protocol.

View Article and Find Full Text PDF

The phase behavior of linear poly(N-isopropylacrylamide) (PNIPA), linear copolymer poly(N-isopropylacrylamide) and poly(sodium acrylate) (PNIPA-SA), and chemically cross-linked PNIPA in water has been determined by temperature modulated differential scanning calorimetry (TM-DSC). Experiments related to linear polymers (PNIPA and PNIPA-SA) indicated nontypical demixing/mixing behavior with a lower critical solution temperature (LCST), which do not correspond to the three classical types of limiting critical behavior. Some similarities and differences are observed in comparison to our literature data using standard TM-DSC for PNIPA/water.

View Article and Find Full Text PDF

The work focuses on research related to determination of application possibility of new, ecofriendly boroorganic polyols in rigid polyurethane foams production. Polyols were obtained from hydroxypropyl urea derivatives esterified with boric acid and propylene carbonate. The influence of esterification type on properties of polyols and next on polyurethane foams properties was determined.

View Article and Find Full Text PDF

Hydrogels based on -isopropylacrylamide and sodium acrylate as ionic comonomer were synthesized by free radical polymerization in water using ,'-methylenebisacrylamide as crosslinker and ammonium persulfate as initiator. The glass transition of dried copolymers poly(-isopropylacrylamide) (PNIPA) and poly(sodium acrylate) (SA) gels and demixing/mixing transition of PNIPA-SA hydrogels swollen with increasing amounts of water were studied using conventional differential scanning calorimetry. In the crosslinked polymers, the glass transition linearly increases, and the transition range becomes broader, with increasing crosslinker content.

View Article and Find Full Text PDF