Publications by authors named "Iwona Pilecka"

The ubiquitin-proteasome system constitutes a major pathway for protein degradation in the cell. Therefore the crosstalk of this pathway with mitochondria is a major topic with direct relevance to many mitochondrial diseases. Proteasome dysfunction triggers not only protein toxicity, but also mitochondrial dysfunction.

View Article and Find Full Text PDF

Because signaling mediated by the transcription factor nuclear factor κB (NF-κB) is initiated by ligands and receptors that can undergo internalization, we investigated how endocytic trafficking regulated this key physiological pathway. We depleted all of the ESCRT (endosomal sorting complexes required for transport) subunits, which mediate receptor trafficking and degradation, and found that the components Tsg101, Vps28, UBAP1, and CHMP4B were essential to restrict constitutive NF-κB signaling in human embryonic kidney 293 cells. In the absence of exogenous cytokines, depletion of these proteins led to the activation of both canonical and noncanonical NF-κB signaling, as well as the induction of NF-κB-dependent transcriptional responses in cultured human cells, zebrafish embryos, and fat bodies in flies.

View Article and Find Full Text PDF

Inhibitors of proteasomes have been shown to affect endocytosis of multiple membrane receptors, in particular at the step of cargo sorting for lysosomal degradation. Here we demonstrate that the inhibition of proteasomes causes specific redistribution of an endosomal adaptor APPL1, which undergoes initial solubilization from APPL endosomes followed by clustering in the perinuclear region. MG132 treatment decreases APPL1 labeling of endosomes while the staining of the canonical early endosomes with EEA1 remains unaffected.

View Article and Find Full Text PDF

Multifunctional adaptor protein APPL1 [adaptor protein containing PH (pleckstrin homology) domain, PTB (phosphotyrosine binding) domain and leucine zipper motif] belongs to a growing group of endocytic proteins which actively participate in various stages of signalling pathways. Owing to its interaction with the small GTPase Rab5, APPL1 localizes predominantly to a subpopulation of early endosomes but is also capable of nucleocytoplasmic shuttling. Among its various binding partners, APPL1 was reported to associate with the nuclear co-repressor complex NuRD (nucleosome remodelling and deacetylase), containing both nucleosome remodelling and HDAC (histone deacetylase) activities, but the biochemical basis or functional relevance of this interaction remained unknown.

View Article and Find Full Text PDF

Accumulating evidence argues that many proteins governing membrane sorting during endocytosis participate also in nuclear signaling and transcriptional regulation, mostly by modulating the activity of various nuclear factors. Some adaptors and accessory proteins acting in clathrin-mediated internalization, as well as endosomal sorting proteins can undergo nuclear translocation and affect gene expression directly, while for others the effects may be more indirect. Although it is often unclear to what extent the endocytic and nuclear functions are interrelated, several of such proteins are implicated in the regulation of cell proliferation and tumorigenesis, arguing that their dual-function nature may be of physiological importance.

View Article and Find Full Text PDF

Canonical Wnt signaling regulates many aspects of cellular physiology and tissue homeostasis during development and in adult organisms. In molecular terms, stimulation by Wnt ligands leads to the stabilization of beta-catenin, its translocation to the nucleus, and stimulation of TCF (T-cell factor)-dependent transcription of target genes. This process is controlled at various stages by a number of regulatory proteins, including transcriptional activators and repressors.

View Article and Find Full Text PDF

In all transmembrane receptor systems the kinetics of receptor trafficking upon ligand stimulation is maintained in a balance between degradative and recycling pathways in order to keep homeostasis and to strictly control receptor-mediated signaling. Endocytosis is commonly considered as an efficient mechanism of uptake and transport of membrane-associated signaling molecules leading to attenuation of ligand-induced responses. Accumulating evidence, however, shows that signaling from internalized receptors not only continues in endosomal compartments, but that there are also distinct signaling events that require endocytosis.

View Article and Find Full Text PDF

Several protein-tyrosine phosphatases (PTPs) have been implicated in the control of growth hormone receptor (GHR) signaling, but none have been shown to affect growth in vivo. We have applied a battery of molecular and cellular approaches to test a family-wide panel of PTPs for interference with GHR signaling. Among the subset of PTPs that showed activity in multiple readouts, we selected PTP-H1/PTPN3 for further in vivo studies and found that mice lacking the PTP-H1 catalytic domain show significantly enhanced growth over their wild type littermates.

View Article and Find Full Text PDF

An increasing number of proteins appear to perform multiple, sometimes unrelated functions in the cell. Such moonlighting properties have been recently demonstrated for proteins involved in clathrin-mediated endocytosis. Some clathrin adaptors and endosomal proteins can undergo nucleocytoplasmic shuttling, which is often based on intrinsic sequence motifs and requires active transport mechanisms.

View Article and Find Full Text PDF

Our molecular understanding of growth hormone-induced signal transduction has improved significantly over the past decades. At the same time, human population genetics and the analysis of genetically engineered animals have led to the discovery of genes that control specific aspects of the overall growth process. Although, currently, growth disorders are still diagnosed and treated on empirical bases, it might soon be possible to stratify patients predominantly by genetic defect, with treatment based on our molecular understanding of the role of the affected gene in the disease.

View Article and Find Full Text PDF