Publications by authors named "Iwona Misiuta"

Mobile devices, digital technologies, and web-based applications-known collectively as eHealth (electronic health)-could improve health care delivery for costly, chronic diseases such as schizophrenia. Pharmacologic and psychosocial therapies represent the primary treatment for individuals with schizophrenia; however, extensive resources are required to support adherence, facilitate continuity of care, and prevent relapse and its sequelae. This paper addresses the use of eHealth in the management of schizophrenia based on a roundtable discussion with a panel of experts, which included psychiatrists, a medical technology innovator, a mental health advocate, a family caregiver, a health policy maker, and a third-party payor.

View Article and Find Full Text PDF

hNT cells, derived from a human teratocarcinoma cell line, are versatile neuron-like cells that have been studied as possible treatment vehicles for neurodegenerative diseases. Previously, we showed the postponement of motor deficit symptoms in a G93A mouse model of amyotrophic lateral sclerosis (ALS) by transplanting hNT cells into the lumbar spinal cord. In this study, we examined the engraftment of hNT cells at multiple sites within the lumbar spinal cord by morphological analysis of neuritic process development.

View Article and Find Full Text PDF

The mononuclear fraction from human umbilical cord blood (HUCB) contains a significant number of stem/progenitor cells that in theory could be come any cell in the body, including neurons. Taking into consideration that transdifferentiation would be a very rare event and also knowing that overlapping genetic programs for hematopoiesis and neuropoiesis exist, we undertook a characterization of the HUCB mononuclear fraction, including analysis of cellular subpopulations and their morphology, cell viability, proliferation, and expression of neural and hematopoietic antigens. Two cell populations were apparent-adherent and floating fractions.

View Article and Find Full Text PDF

Background: Neutrophils have a central role in the inflammatory conditions of the central nervous system (CNS). ELR chemokines direct neutrophil migration, but the source of chemokines in the CNS is unclear. We quantified chemokine production using cell-line models of astrocytic and neuronal cells, specifically NT2.

View Article and Find Full Text PDF

Cell therapy is a rapidly moving field with new cells, cell lines, and tissue-engineered constructs being developed globally. As these novel cells are further developed for transplantation studies, it is important to understand their safety profiles both prior to and posttransplantation in animals and humans. Embryonic carcinoma-derived cells are considered an important alternative to stem cells.

View Article and Find Full Text PDF

Human, neuronally committed hNT or NT2-N cells, originally derived from the Ntera2/D1 (NT2) clone after exposure to retinoic acid (RA), represent a potentially important source of cells to treat neurodegenerative diseases. Our previous in vitro experiments showed that hNT cells possess immunocytochemically detectable markers typical of dopaminergic (DA) ventral mesencephalic (VM) neurons, including tyrosine hydroxylase (TH), dopamine transporter (DAT), dopamine receptor (D2), and aldehyde dehydrogenase (AHD-2). In the current study, we sought to examine whether Nurr1, an orphan receptor of the nuclear receptor superfamily shown to be essential for the development, differentiation and survival of midbrain DA neurons, would be expressed in 3, 4, or 5 week RA-induced hNT neurons and their NT2 precursors.

View Article and Find Full Text PDF