Microglial cells clear the brain of pathogens and harmful debris, including amyloid-β (Aβ) deposits that are formed during Alzheimer's disease (AD). We studied the expression of Msr1, Ager and Cd36 receptors involved in Aβ uptake and expression of Cd33 protein, which is considered a risk factor in AD. The effect of silver nanoparticles (AgNPs) and cadmium telluride quantum dots (CdTeQDs) on the expression of the above receptors and Aβ uptake by microglial cells was investigated.
View Article and Find Full Text PDFThe photoelectrochemical behavior of dye-sensitized photoelectrochemical cells based on a TiO layer sensitized with ruthenium components, including an absorber, ruthenium(II)bis(2,2'-bipyridine)([2,2'-bipyridine]-4,4'-diylbis(phosphonic acid)) dibromide (RuP), and a catalyst, ruthenium(II) tris(4-methylpyridine)(4-(4-(2,6-bis((l1-oxidanyl)carbonyl)pyridin-4-yl)phenyl) pyridine-2,6-dicarboxylic acid) (RuOEC), was investigated in the following water-based electrolyte configurations: KCl (pH ≈ 5), HCl (pH ≈ 3), ethylphoshonic acid (pH ≈ 3) with a different KCl concentration, and a standard phosphate buffer (pH ≈ 7). The rate of charge transfer on the photoanode's surface was found to increase in line with the increase in the concentration of chloride anions (Cl) in the low pH electrolyte. This effect is discussed in the context of pH influence, ionic strength, and specific interaction, studied by cyclic voltammetry (CV) in dark conditions and upon illumination of the photoanodes.
View Article and Find Full Text PDFThe increasing use of nanoparticles (NPs) in various applications entails the need for reliable assessment of their potential toxicity for humans. Originally, studies concerning the toxicity of NPs focused on cytotoxic and genotoxic effects, but more recently, attention has been paid to epigenetic changes induced by nanoparticles. In the present research, we analysed the DNA methylation status of genes related to inflammation and apoptosis as well as the expression of miRNAs related to these processes in response to silver (AgNPs), gold (AuNPs), and superparamagnetic iron oxide nanoparticles (SPIONs) at low cytotoxic doses in HepG2 cells.
View Article and Find Full Text PDFToxicol Appl Pharmacol
October 2018
Metallic nanomaterials are utilized in an increasing number of applications in medicine and industry. Their general toxicity was tested in numerous reports both in vitro and in vivo but limited data exist on how nanomaterials affect the activity of cellular signaling pathways activated by growth factors and cytokines. The aim of the present work was to test the hypothesis predicting that silver, gold and superparamagnetic iron oxide nanoparticles may interfere with cellular signaling activated by tumor necrosis factor (TNF) and change the final cellular outcome of TNF action.
View Article and Find Full Text PDFStandard ruthenium components of dye-sensitized solar cells (sensitizer N719) and dye-sensitized photoelectrochemical cells (sensitizer RuP and water oxidation catalyst RuOEC) are investigated in the same solar cell configuration to compare their photodynamics and charge separation efficiency. The samples are studied on time scales from femtoseconds to seconds by means of transient absorption, time-resolved emission and electrochemical impedance measurements. RuP shows significantly slower electron injection into a mesoporous titania electrode and enhanced fast (sub-ns) electron recombination with respect to those of N719.
View Article and Find Full Text PDFThe substitution of iodide electrolytes with cobalt ones has led to the current champion laboratory efficiencies for dye-sensitized solar cells (DSSCs). However, unlike with organic dyes, this strategy does not work with classical ruthenium dyes. Therefore, we compare DSSCs sensitized with a popular Ru dye (N719) using both types of electrolytes by exploring the electron dynamics occurring from sub-ps to seconds.
View Article and Find Full Text PDFThe dynamics of electron transfer at the dye-titania and titania-electrolyte interfaces is investigated in two post-sensitization processes: (i) atomic layer deposition of blocking alumina coating and (ii) hierarchical molecular multicapping. To measure the electron transfer dynamics, time-resolved spectroscopic methods (femtosecond transient absorption on the time scale from femtoseconds to nanoseconds and electrochemical impedance spectroscopy on the time scale from milliseconds to seconds) are applied to the complete dye-sensitized solar cells with cobalt-based electrolyte and champion ADEKA-1 dye (with silyl-anchor unit) or its popular carboxyl-anchor analogue, MK-2 dye. Both molecular capping and alumina blocking layers slow down the electron injection process (the average rate constant decreases from 1.
View Article and Find Full Text PDFParthenolide (PTL), a well-known sesquiterpene lactone of natural origin with α,β-unsaturated carbonyl structure, has proven to show promising anti-cancer properties. In this report, anti-proliferative potential of two synthetic methyleneisoxazolidin-5-ones, MZ-6 and MZ-14, with the same structural motif, has been investigated in human hepatoma HepG2 cells. The effects on apoptosis induction and DNA damage were evaluated.
View Article and Find Full Text PDFWe examined the relation between DNA damage and the clonogenic potential of 3 human cell lines, HepG2, HT29 and A549, treated with bare 20 nm or 200 nm silver nanoparticles (AgNPs). The endpoints examined were the DNA breakage estimated by the comet assay, the oxidative base damage recognized by formamido-pyrimidine glycosylase (FPG) and estimated with the FPG+comet assay, and the frequencies of histone γH2AX foci and micronuclei. Each cell line studied had a different pattern of DNA breakage and base damage versus the NPs concentration and time of treatment.
View Article and Find Full Text PDFBackground: Investigations concerned the mechanism of HT-29 cells radiosensitization by cis-9,trans-11-conjugated linoleic acid (c9,t11-CLA), a natural component of human diet with proven antitumor activity.
Methods: The cells were incubated for 24h with 70μM c9,t11-CLA and then X-irradiated. The following methods were used: gas chromatography (incorporation of the CLA isomer), flow cytometry (cell cycle), cloning (survival), Western blotting (protein distribution in membrane fractions), and pulse-field gel electrophoresis (rejoining of DNA double-strand breaks).
The programmed cell death usually is identified with apoptosis, though a scheduled sequence of events can be observed also in autophagy, mitotic catastrophe and, under certain circumstances, in necrosis. Apoptosis begins with activation of the initiator caspases (cysteine proteases) in the signaling complexes: the apoptosome (on the intrinsic or mitochondrial pathway) or the degradosome (on the extrinsic or death receptor pathway). The proteolytic cascade then leads, through activation of downstream caspases and DNases, to digestion of cell components.
View Article and Find Full Text PDFDNA Repair (Amst)
September 2005
A PFGE method was adapted to measure DNA double-strand breaks (DSBs) in mammalian cells after low (0-25 Gy) doses of ionising radiation. Instead of radionuclide incorporation, DNA staining in the gel by SYBR-Gold was used, which lowered the background of DNA damage and could be applied to non-cycling cells. DSB level was defined as a product of a fraction of DNA released to the gel (FR) and a number of DNA fragments in the gel (DNA(fragm)) and expressed as a percentage above control value.
View Article and Find Full Text PDFWe examined radiosensitizing properties of two novel platinum complexes (ethylenediamine(L-malato)platinum(II)), Pt1 and bis(1-ethylimidazole(L-malato)platinum(II)), Pt4. Initial double strand break (DSB) level and DSB rejoining were measured, using pulse field gel electrophoresis (PFGE) in human G1 phase lymphocytes subjected to Pt complex treatment alone and in combination with 10Gy of X-rays. Effects of Pt complex pre-treatment followed by X-irradiation were examined on survival (clonogenic ability) and growth (48 h growth tests) in Chinese hamster ovary (CHO-K1), xrs6 and L5178Y (LY) cells (LY-R and LY-S sublines).
View Article and Find Full Text PDF