Publications by authors named "Iwona Dabkowska"

The dissociative double photoionization of isoxazole molecules has been investigated experimentally and theoretically. The experiment has been carried out in the 27.5-36 eV photon energy range using vacuum ultraviolet (VUV) synchrotron radiation excitation combined with ion time-of-flight (TOF) spectrometry and photoelectron-photoion-photoion coincidence (PEPIPICO) technique.

View Article and Find Full Text PDF

Six novel amino acid chromophores were synthesized and their spectroscopic, acid-base, and electrochemical properties are discussed in this work. In studied compounds, selected amino acid residues (l-Aspartic acid, l-Glutamic acid, l-Glutamine, l-Histidine, l-Lysine, l-Arginine) are attached to the 1-(piperazine) 9,10-anthraquinone skeleton via the amide bond between the carboxyl group of amino acid and nitrogen atom of the piperazine ring. All derivatives have been characterized using a variety of spectroscopic techniques (mass spectrometry, 1HNMR, UV-Vis, IR spectroscopy), acid-base (electrochemical and UV-Vis) titrations, and cyclic voltammetry methods.

View Article and Find Full Text PDF

8-Bromoadenine (A) is a potential DNA radiosensitizer for cancer radiation therapy due to its efficient interaction with low-energy electrons (LEEs). LEEs are a short-living species generated during the radiation damage of DNA by high-energy radiation as it is applied in cancer radiation therapy. Electron attachment to A in the gas phase results in a stable parent anion below 3 eV electron energy in addition to fragmentation products formed by resonant exocyclic bond cleavages.

View Article and Find Full Text PDF

2-Fluoroadenine ((2F) A) is a therapeutic agent, which is suggested for application in cancer radiotherapy. The molecular mechanism of DNA radiation damage can be ascribed to a significant extent to the action of low-energy (<20 eV) electrons (LEEs), which damage DNA by dissociative electron attachment. LEE induced reactions in (2F) A are characterized both isolated in the gas phase and in the condensed phase when it is incorporated into DNA.

View Article and Find Full Text PDF

Formation of the excited NH(A(3)Π) free radicals in the photodissociation of isoxazole (C3H3NO) molecules has been studied over the 14-22 eV energy range using photon-induced fluorescence spectroscopy. The NH(A(3)Π) is produced through excitation of the isoxazole molecules into higher-lying superexcited states. Observation of the NH radical, which is not a structural unit of the isoxazole molecule, corroborates the hydrogen atom (or proton) migration within the molecule prior to dissociation.

View Article and Find Full Text PDF

Electron attachment to gas phase perfluorophenylisocyanate (C(6)F(5)NCO) and perfluorophenyloacetonitrile (C(6)F(5)CH(2)CN) generates metastable parent anions within a very narrow resonance close to zero energy. At higher energies (2-7 eV), dissociative electron attachment (DEA) resonances are present, associated with the rupture of the C(6)F(5)-X bond (X = NCO, CH(2)CN) with the excess electron finally localised on either of the two fragments. The most intense fragment ion from C(6)F(5)CH(2)CN (M) is (M - HF)(-), which arises from the loss of a neutral HF from the transient anion and requires the concerted cleavage of two bonds and formation of a new molecule (HF).

View Article and Find Full Text PDF

Low energy electron attachment to acetamide and some of its derivatives shows unique features in that the unimolecular reactions of the transient anions are remarkably complex, involving multiple bond cleavages and the formation of new molecules. Each of the three compounds acetamide (CH(3)C(O)NH(2)), glycolamide (CH(2)OHC(O)NH(2)) and cyanoacetamide (CH(2)CNC(O)NH(2)) shows a pronounced resonance located near 2 eV and decomposing into CN(-) along a concerted reaction forming a neutral H(2)O molecule and the corresponding radical (methyl and methoxy). From glycolamide an additional reaction pathway resulting in the loss of water is operative, in this case generating two fragments and observable via the complementary anion (M-H(2)O)(-).

View Article and Find Full Text PDF

Electron attachment to pentafluorobenzonitrile (C(6)F(5)CN) and pentafluoronitrobenzene (C(6)F(5)NO(2)) is studied in the energy range 0-16 eV by means of a crossed electron-molecular beam experiment with mass spectrometric detection of the anions. We find that pentafluoronitrobenzene exclusively generates fragment anions via dissociative electron attachment (DEA), while pentafluorobenzonitrile forms a long lived parent anion within a narrow energy range close to 0 eV and additionally undergoes DEA at higher energies. This is in contrast to the behaviour of the non-fluorinated analogues as in nitrobenzene the non-decomposed anion is formed while in benzonitrile only DEA is observed.

View Article and Find Full Text PDF

Changes of electrostatic potential around the DNA molecule resulting from chemical modifications of nucleotides may play a role in enzymatic recognition of damaged sites. Effects of chemical modifications of nucleotides on the structure of DNA have been characterized through electronic structure computations. Quantum mechanical structural optimizations of fragments of five pairs of nucleotides with thymine or thymine glycol were performed at the density functional level of theory with a B3LYP exchange-correlation functional and 6-31G(d,p) basis sets.

View Article and Find Full Text PDF

The formation of negative ions following electron impact to ethanol (CH(3)CH(2)OH) and trifluoroethanol (CF(3)CH(2)OH) is studied in the gas phase by means of a crossed electron-molecular beam experiment and in the condensed phase via Electron Stimulated Desorption (ESD) of fragment ions from the corresponding molecular films under UHV conditions. Gas phase ethanol exhibits two pronounced resonances, located at 5.5 eV and 8.

View Article and Find Full Text PDF

Low energy electron attachment (DEA) to hexafluoroacetone azine (HFAA) leads to a remarkable energy selective excision of CN(-) within a pronounced resonance located at 1.35 eV. The underlying dissociative electron attachment (DEA) reaction involves multiple bond cleavages and rearrangement within the neutral products.

View Article and Find Full Text PDF

Dissociative electron attachment to 1,2,3,5-tetra-O-acetyl-beta-D-ribofuranose (TAR) is studied in a crossed electron-molecular beam experiment with mass spectrometric detection of the observed fragment ions. Since in TAR acetyl groups are coupled at the relevant positions to the five membered ribose ring, it may serve as an appropriate model compound to study the response of the sugar unit in DNA towards low energy electrons. Intense resonances close to 0 eV are observed similar to the pure gas phase sugars (2-deoxyribose, ribose, and fructose).

View Article and Find Full Text PDF

Stabilization energies of the H-bonded and stacked structures of a DNA base pair were studied in the crystal structures of adenine-thymine, cytosine-guanine, and adenine-cytosine steps as well as in the 5'-d(GCGAAGC)-3' hairpin (utilizing the NMR geometry). Stabilization energies were determined as the sum of the complete basis set (CBS) limit of MP2 stabilization energies and the Delta E(CCSD(T)) - Delta E(MP2) correction term evaluated with the 6-31G*(0.25) basis set.

View Article and Find Full Text PDF

Although ZrO2 and HfO2 are, for the most part, quite similar chemically, subtle differences in their electronic structures appear to be responsible for differing MO2/Si (M = Zr, Hf) interface stabilities. To shed light on the electronic structure differences between ZrO2 and HfO2, we have conducted joint experimental and theoretical studies. Because molecular electron affinities are a sensitive probe of electronic structure, we have measured them by conducting photoelectron spectroscopic experiments on ZrO2(-) and HfO2(-).

View Article and Find Full Text PDF

The geometries and interaction energies of stacked and hydrogen-bonded uracil dimers and a stacked adeninecdots, three dots, centeredthymine pair were studied by means of high-level quantum chemical calculations. Specifically, standard as well as counterpoise-corrected optimizations were performed at second-order Moller-Plesset (MP2) and coupled cluster level of theory with single, double, and perturbative triple excitations [CCSD(T)] levels with various basis sets up to the complete basis set limit. The results can be summarized as follows: (i) standard geometry optimization with small basis set (e.

View Article and Find Full Text PDF

The neutral and anionic formic acid dimers have been studied at the second-order Moller-Plesset and coupled-cluster level of theory with single, double, and perturbative triple excitations with augmented, correlation-consistent basis sets of double- and triple-zeta quality. Scans of the potential-energy surface for the anion were performed at the density-functional level of theory with a hybrid B3LYP functional and a high-quality basis set. Our main finding is that the formic acid dimer is susceptible to intermolecular proton transfer upon an excess electron attachment.

View Article and Find Full Text PDF

The anionic base pairs of adenine and thymine, (AT)(-), and 9-methyladenine and 1-methylthymine, (MAMT)(-), have been investigated both theoretically and experimentally in a complementary, synergistic study. Calculations on (AT)(-) found that it had undergone a barrier-free proton transfer (BFPT) similar to that seen in other dimer anion systems and that its structural configuration was neither Watson-Crick (WC) nor Hoogsteen (HS). The vertical detachment energy (VDE) of (AT)(-) was determined by anion photoelectron spectroscopy and found to be in agreement with the VDE value predicted by theory for the BFPT mechanism.

View Article and Find Full Text PDF

The most stable structures for the gas-phase complexes of minor tautomers of uracil (U) with glycine (G) were characterized at the density functional B3LYP/6-31++G level of theory. These are cyclic structures stabilized by two hydrogen bonds. The relative stability of isolated tautomers of uracil was rationalized by using thermodynamic and structural arguments.

View Article and Find Full Text PDF

The photoelectron spectrum of the uracil-alanine anionic complex (UA)(-) has been recorded with 2.540 eV photons. This spectrum reveals a broad feature with a maximum between 1.

View Article and Find Full Text PDF

The gas-phase basicity (GB) of the flexible polyfunctional N(1),N(1)-dimethyl-N(2)-beta-(2-pyridylethyl)formamidine (1) containing two potential basic sites (the ring N-aza and the chain N-imino) is obtained from proton-transfer equilibrium constant measurements, using Fourier-transform ion-cyclotron resonance mass spectrometry. Comparison of the experimental GB obtained for 1 with those reported for model amidines and azines indicates that the chain N-imino in the amidine group is the favored site of protonation. Semiempirical (AM1) and ab initio calculations (HF, MP2, and DFT), performed for 1 and its protonated forms, confirm this interpretation.

View Article and Find Full Text PDF