Publications by authors named "Iwo Bialynicki-Birula"

Trapping of bodies by waves is extended from electromagnetism to gravity. It is shown that gravitational waves endowed with angular momentum may accumulate near its axis all kinds of cosmic debris. The trapping mechanism in both cases can be traced to the Coriolis force associated with the local rotation of the space metric.

View Article and Find Full Text PDF

There are important differences between the nonrelativistic and relativistic description of electron beams. In the relativistic case the orbital angular momentum quantum number cannot be used to specify the wave functions and the structure of vortex lines in these two descriptions is completely different. We introduce analytic solutions of the Dirac equation in the form of exponential wave packets and we argue that they properly describe relativistic electron beams carrying angular momentum.

View Article and Find Full Text PDF

We construct analytically, a new family of null solutions to Maxwell's equations in free space whose field lines encode all torus knots and links. The evolution of these null fields, analogous to a compressible flow along the Poynting vector that is shear free, preserves the topology of the knots and links. Our approach combines the construction of null fields with complex polynomials on S3.

View Article and Find Full Text PDF

The uncertainty relation for the photons in three dimensions that overcomes the difficulties caused by the nonexistence of the photon position operator is derived in quantum electrodynamics. The photon energy density plays the role of the probability density in configuration space. It is shown that the measure of the spatial extension based on the energy distribution in space leads to an inequality that is a natural counterpart of the standard Heisenberg relation.

View Article and Find Full Text PDF

It is shown that electromagnetic vortices can act as beam guides for charged particles. The confinement in the transverse directions is due to the rotation of the electric and magnetic fields around the vortex line. A large class of exact solutions describing various types of relativistic beams formed by an electromagnetic wave with a simple vortex line is found both in the classical and in the quantum case.

View Article and Find Full Text PDF