Publications by authors named "Iwaszkiewicz J"

Crop genomes accumulate deleterious mutations-a phenomenon known as the cost of domestication. Precision genome editing has been proposed to eliminate such potentially harmful mutations; however, experimental demonstration is lacking. Here we identified a deleterious mutation in the tomato transcription factor SUPPRESSOR OF SP2 (SSP2), which became prevalent in the domesticated germplasm and diminished DNA binding to genome-wide targets.

View Article and Find Full Text PDF
Article Synopsis
  • Neurotransmitters are released from synaptic vesicles when calcium enters, triggering membrane fusion driven by a complex of SNARE proteins.
  • The neuronal protein Munc18-1 stabilizes a SNARE protein (syntaxin-1a), preventing complex formation, but is crucial for neurotransmitter release in living organisms.
  • By using mutations to alter the binding complex and molecular dynamics simulations, the researchers created a model suggesting a new conformation of syntaxin-1a that allows SNARE complex formation while still attached to Munc18-1, warranting further investigation into how other proteins regulate this process.
View Article and Find Full Text PDF

Intellectual developmental disorder with paroxysmal dyskinesia or seizures (IDDPADS, OMIM#619150) is an ultra-rare childhood-onset autosomal recessive movement disorder manifesting paroxysmal dyskinesia, global developmental delay, impaired cognition, progressive psychomotor deterioration and/or drug-refractory seizures. We investigated three consanguineous Pakistani families with six affected individuals presenting overlapping phenotypes partially consistent with the reported characteristics of IDDPADS. Whole exome sequencing identified a novel missense variant in Phosphodiesterase 2A (PDE2A): NM_002599.

View Article and Find Full Text PDF
Article Synopsis
  • Influenza A virus primarily enters host cells through a process called clathrin-dependent receptor-mediated endocytosis, but the exact entry receptor has not been definitively identified.
  • Researchers used a method involving proximity ligation and mass spectrometry to identify transferrin receptor 1 (TfR1) as a potential receptor that facilitates IAV entry.
  • Experiments confirmed that TfR1's recycling is crucial for virus entry, and even modified forms of TfR1 can assist in IAV uptake, highlighting a unique mechanism by which the virus exploits the receptor.
View Article and Find Full Text PDF

Craniofacial microsomia (CFM; also known as Goldenhar syndrome), is a craniofacial developmental disorder of variable expressivity and severity with a recognizable set of abnormalities. These birth defects are associated with structures derived from the first and second pharyngeal arches, can occur unilaterally and include ear dysplasia, microtia, preauricular tags and pits, facial asymmetry and other malformations. The inheritance pattern is controversial, and the molecular etiology of this syndrome is largely unknown.

View Article and Find Full Text PDF

Telomere maintenance 2 (TELO2), Tel2 interacting protein 2 (TTI2), and Tel2 interacting protein 1 (TTI1) are the three components of the conserved Triple T (TTT) complex that modulates activity of phosphatidylinositol 3-kinase-related protein kinases (PIKKs), including mTOR, ATM, and ATR, by regulating the assembly of mTOR complex 1 (mTORC1). The TTT complex is essential for the expression, maturation, and stability of ATM and ATR in response to DNA damage. TELO2- and TTI2-related bi-allelic autosomal-recessive (AR) encephalopathies have been described in individuals with moderate to severe intellectual disability (ID), short stature, postnatal microcephaly, and a movement disorder (in the case of variants within TELO2).

View Article and Find Full Text PDF

In formin-family proteins, actin filament nucleation and elongation activities reside in the formin homology 1 (FH1) and FH2 domains, with reaction rates that vary by at least 20-fold between formins. Each cell expresses distinct formins that assemble one or several actin structures, raising the question of what confers each formin its specificity. Here, using the formin Fus1 in Schizosaccharomyces pombe, we systematically probed the importance of formin nucleation and elongation rates in vivo.

View Article and Find Full Text PDF

Purpose: CTR9 is a subunit of the PAF1 complex (PAF1C) that plays a crucial role in transcription regulation by binding CTR9 to RNA polymerase II. It is involved in transcription-coupled histone modification through promoting H3K4 and H3K36 methylation. We describe the clinical and molecular studies in 13 probands, harboring likely pathogenic CTR9 missense variants, collected through GeneMatcher.

View Article and Find Full Text PDF

Excessive production of viral glycoproteins during infections poses a tremendous stress potential on the endoplasmic reticulum (ER) protein folding machinery of the host cell. The host cell balances this by providing more ER resident chaperones and reducing translation. For viruses, this unfolded protein response (UPR) offers the potential to fold more glycoproteins.

View Article and Find Full Text PDF

Knobloch syndrome is an autosomal recessive phenotype mainly characterized by retinal detachment and encephalocele caused by biallelic pathogenic variants in the COL18A1 gene. However, there are patients clinically diagnosed as Knobloch syndrome with unknown molecular etiology not linked to COL18A1. We studied an historical pedigree (published in 1998) designated as KNO2 (Knobloch type 2 syndrome with intellectual disability, autistic behavior, retinal degeneration, encephalocele).

View Article and Find Full Text PDF
Article Synopsis
  • * Researchers identified 32 individuals with microcephaly, neurodevelopmental issues, and other neurological symptoms due to mutations in NARS1, revealing reduced levels of NARS1 mRNA and enzyme activity in affected cells.
  • * The study suggests that these mutations lead to neurodevelopmental diseases through mechanisms like toxic gain-of-function for new mutations and partial loss-of-function for recessive mutations.
View Article and Find Full Text PDF

The molecular cause of the majority of rare autosomal recessive disorders remains unknown. Consanguinity due to extensive homozygosity unravels many recessive phenotypes and facilitates the detection of novel gene-disease links. Here, we report two siblings with phenotypic signs, including intellectual disability (ID), developmental delay and microcephaly from a Pakistani consanguineous family in which we have identified homozygosity for p(Tyr103His) in the PSMB1 gene (Genbank NM_002793) that segregated with the disease phenotype.

View Article and Find Full Text PDF

The catalytic activity of the protease MALT1 is required for adaptive immune responses and regulatory T (Treg)-cell development, while dysregulated MALT1 activity can lead to lymphoma. MALT1 activation requires its monoubiquitination on lysine 644 (K644) within the Ig3 domain, localized adjacent to the protease domain. The molecular requirements for MALT1 monoubiquitination and the mechanism by which monoubiquitination activates MALT1 had remained elusive.

View Article and Find Full Text PDF

Immune checkpoints are crucial in the maintenance of antitumor immune responses. The activation or blockade of immune checkpoints is dependent on the interactions between receptors and ligands; such interactions can provide inhibitory or stimulatory signals, including the enhancement or suppression of T-cell proliferation, differentiation, and/or cytokine secretion. B-and T-lymphocyte attenuator (BTLA) is a lymphoid-specific cell surface receptor which is present on T-cells and interacts with herpes virus entry mediator (HVEM), which is present on tumor cells.

View Article and Find Full Text PDF

In a consanguineous Pakistani family with two affected individuals, a homozygous variant Gly399Val in the eighth transmembrane domain of the taurine transporter SLC6A6 was identified resulting in a hypomorph transporting capacity of ~15% compared with normal. Three-dimensional modeling of this variant has indicated that it likely causes displacement of the Tyr138 (TM3) side chain, important for transport of taurine. The affected individuals presented with rapidly progressive childhood retinal degeneration, cardiomyopathy and almost undetectable plasma taurine levels.

View Article and Find Full Text PDF

Cargo transport along the cytoplasmic microtubular network is essential for neuronal function, and cytoplasmic dynein-1 is an established molecular motor that is critical for neurogenesis and homeostasis. We performed whole-exome sequencing, homozygosity mapping, and chromosomal microarray studies in five individuals from three independent pedigrees and identified likely-pathogenic variants in DYNC1I2 (Dynein Cytoplasmic 1 Intermediate Chain 2), encoding a component of the cytoplasmic dynein 1 complex. In a consanguineous Pakistani family with three affected individuals presenting with microcephaly, severe intellectual disability, simplification of cerebral gyration, corpus callosum hypoplasia, and dysmorphic facial features, we identified a homozygous splice donor site variant (GenBank: NM_001378.

View Article and Find Full Text PDF

Modulation by neuropeptides enhances several functions of acid-sensing ion channels (ASICs), such as pain sensation and acid-induced neuronal injury. The acid-induced opening of ASICs is transient, because of a rapid desensitization. Neuropeptides containing an Arg-Phe-amide motif affect ASIC desensitization and allow continuous activity of ASICs.

View Article and Find Full Text PDF

FBXL3 (F-Box and Leucine Rich Repeat Protein 3) encodes a protein that contains an F-box and several tandem leucine-rich repeats (LRR) domains. FBXL3 is part of the SCF (Skp1-Cullin-F box protein) ubiquitin ligase complex that binds and leads to phosphorylation-dependent degradation of the central clock protein cryptochromes (CRY1 and CRY2) by the proteasome and its absence causes circadian phenotypes in mice and behavioral problems. No FBXL3-related phenotypes have been described in humans.

View Article and Find Full Text PDF

Kinesin proteins are critical for various cellular functions such as intracellular transport and cell division, and many members of the family have been linked to monogenic disorders and cancer. We report eight individuals with intellectual disability and microcephaly from four unrelated families with parental consanguinity. In the affected individuals of each family, homozygosity for likely pathogenic variants in KIF14 were detected; two loss-of-function (p.

View Article and Find Full Text PDF

Purpose: To elucidate the novel molecular cause in two unrelated consanguineous families with autosomal recessive intellectual disability.

Methods: A combination of homozygosity mapping and exome sequencing was used to locate the plausible genetic defect in family F162, while only exome sequencing was followed in the family PKMR65. The protein 3D structure was visualized with the University of California-San Francisco Chimera software.

View Article and Find Full Text PDF

Antibody based immune-checkpoint blockade therapy is a major breakthrough in oncology, leading to clinical benefit for cancer patients. Among the growing family of inhibitory receptors, the B and T lymphocyte attenuator (BTLA), which interacts with herpes virus entry mediator (HVEM), is a promising target for immunotherapy. Indeed, BTLA inhibits T-cell proliferation and cytokine production.

View Article and Find Full Text PDF

Angioimmunoblastic T-cell lymphoma (AITL) and other lymphomas derived from follicular T-helper cells (TFH) represent a large proportion of peripheral T-cell lymphomas (PTCLs) with poorly understood pathogenesis and unfavorable treatment results. We investigated a series of 85 patients with AITL (n = 72) or other TFH-derived PTCL (n = 13) by targeted deep sequencing of a gene panel enriched in T-cell receptor (TCR) signaling elements. RHOA mutations were identified in 51 of 85 cases (60%) consisting of the highly recurrent dominant negative G17V variant in most cases and a novel K18N in 3 cases, the latter showing activating properties in in vitro assays.

View Article and Find Full Text PDF

We have designed and validated a novel generic platform for production of tetravalent IgG1-like chimeric bispecific Abs. The VH-CH1-hinge domains of mAb2 are fused through a peptidic linker to the N terminus of mAb1 H chain, and paired mutations at the CH1-CL interface mAb1 are introduced that force the correct pairing of the two different free L chains. Two different sets of these CH1-CL interface mutations, called CR3 and MUT4, were designed and tested, and prototypic bispecific Abs directed against CD5 and HLA-DR were produced (CD5xDR).

View Article and Find Full Text PDF

Loss of the RNA-binding protein Bicaudal-C (Bicc1) provokes renal and pancreatic cysts as well as ectopic Wnt/β-catenin signaling during visceral left-right patterning. Renal cysts are linked to defective silencing of Bicc1 target mRNAs, including adenylate cyclase 6 (AC6). RNA binding of Bicc1 is mediated by N-terminal KH domains, whereas a C-terminal sterile alpha motif (SAM) self-polymerizes in vitro and localizes Bicc1 in cytoplasmic foci in vivo.

View Article and Find Full Text PDF

Serine proteases, serine protease inhibitors, and protease-activated receptors (PARs) are responsible for several human skin disorders characterized by impaired epidermal permeability barrier function, desquamation, and inflammation. In this study, we addressed the consequences of a catalytically dead serine protease on epidermal homeostasis, the activation of PAR2 and the inhibition by the serine protease inhibitor nexin-1. The catalytically inactive serine protease CAP1/Prss8, when ectopically expressed in the mouse, retained the ability to induce skin disorders as well as its catalytically active counterpart (75%, n=81).

View Article and Find Full Text PDF